Coherent WDM-PON and free space optical (FSO) system for front-haul in next-generation cellular networks

被引:1
作者
AlQahtani, Dokhyl [1 ]
El-Nahal, Fady [2 ,3 ]
机构
[1] Electrical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj
[2] College of Engineering, Qatar University, Doha
[3] Department of Electrical Engineering, Islamic University of Gaza, Gaza
来源
Optik | 2025年 / 323卷
关键词
Centralized Radio Access Network (C-RAN); Free Space Optics (FSO); Fronthaul networks; Passive Optical Network (PON); Reflective semiconductor optical amplifiers (RSOAs);
D O I
10.1016/j.ijleo.2024.172212
中图分类号
学科分类号
摘要
The demand for optical networks that offer low latency and high capacity is increasing with the rise of next-generation cellular systems. Centralized Radio Access Network (C-RAN) architecture provides a cost-effective approach to mobile network deployment. To enhance flexibility and minimize fronthaul network implementation expenses, we propose a bidirectional fronthaul C-RAN configuration that combines coherent Wavelength Division Multiplexing (WDM), passive optical networks (PONs), and free-space optical (FSO) communication. This system utilizes an efficient wavelength reuse technique employing reflective semiconductor optical amplifiers (RSOAs), which helps reduce costs and boost capacity, resulting in a high-throughput network. The setup achieves a downstream data rate of 125 Gbps using 16-quadrature amplitude modulation (16-QAM) and an upstream data rate of 10 Gbps using on-off keying (OOK). An FSO link was modeled using a Gamma–Gamma channel for optical signal transmission. The bit error rate (BER) results suggest that the fronthaul based on WDM-FSO-PON can reach 4 Tbps over a 2.5 km free-space link. © 2025 Elsevier GmbH
引用
收藏
相关论文
共 53 条
[31]  
Ansari I.S., Yilmaz F., Alouini M.-S., Performance analysis of free-space optical links over málaga (M) turbulence channels with pointing errors, IEEE Trans. Wireless Commun., 15, 1, pp. 91-102, (2016)
[32]  
Yeh C.-H., Gu C.-S., Guo B.-S., Chang Y.-J., Chow C.-W., Tseng M.-C., Chen R.-B., Hybrid free space optical communication system and passive optical network with high splitting ratio for broadcasting data traffic, J. Opt., 20, 12, (2018)
[33]  
Hamza A.S., Deogun J.S., Alexander D.R., Classification framework for free space optical communication links and systems, IEEE Commun. Surv. Tutor., 21, 2, pp. 1346-1382, (2019)
[34]  
Bekkali A., Fujita H., Hattori M., Free-space optical communication systems for B5G/6G networks, 26th Optoelectronics and Communications Conference, (2021)
[35]  
Corral F.V., Cuenca C., Soto I., Design of an optical wireless network using free space optics technology (FSO), in 5G/6G networks environment, 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control, ICA-ACCA, pp. 1-5, (2021)
[36]  
Brasini T., Domecq M., Iliev T.B., Stoyanov I., Mihaylov G., Beloev I., On free-space optical communication as a Backhauls applications for 5G, 2022 International Conference on Communications, Information, Electronic and Energy Systems, CIEES, pp. 1-4, (2022)
[37]  
Mirza J., Ghafoor S., Hussain A., All-optical generation and transmission of multiple ultrawideband signals over free space optical link, Opt. Eng., Bellingham, 58, 5, (2019)
[38]  
Mai V.V., Pham A.T., Integrated FSO/PON for broadband access networks: A comprehensive protocol stack design and analysis, 2015 IEEE Global Communications Conference, GLOBECOM, pp. 1-7, (2015)
[39]  
Lu H.-H., Li C.-Y., Chen H.-W., Ho C.-M., Cheng M.-T., Huang S.-J., Yang Z.-Y., Lin X.-Y., Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme, Opt. Express, 24, 15, pp. 17250-17258, (2016)
[40]  
Yeh C., Chow C.-W., Chen H., Sung J., Liu Y., Demonstration of using injection-locked Fabry-Perot laser diode for 10 gbit/s 16-QAM OFDM WDM-PON, Electron. Lett., 48, 15, pp. 940-942, (2012)