ViTSen: Bridging Vision Transformers and Edge Computing With Advanced In/Near-Sensor Processing

被引:0
|
作者
Tabrizchi, Sepehr [1 ]
Reidy, Brendan C. [2 ]
Najafi, Deniz [3 ]
Angizi, Shaahin [3 ]
Zand, Ramtin [2 ]
Roohi, Arman [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
[2] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA
[3] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
Computer vision; Accuracy; Quantization (signal); Power demand; Image coding; Image edge detection; Parallel processing; Transformers; Computational efficiency; Sensors; In-sensor processing (ISP); Internet of Things (IoT); vision transformer (ViT); IMAGE SENSOR;
D O I
10.1109/LES.2024.3449240
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This letter introduces ViTSen, optimizing vision transformers (ViTs) for resource-constrained edge devices. It features an in-sensor image compression technique to reduce data conversion and transmission power costs effectively. Further, ViTSen incorporates a ReRAM array, allowing efficient near-sensor analog convolution. This integration, novel pixel reading, and peripheral circuitry decrease the reliance on analog buffers and converters, significantly lowering power consumption. To make ViTSen compatible, several established ViT algorithms have undergone quantization and channel reduction. Circuit-to-application co-simulation results show that ViTSen maintains accuracy comparable to a full-precision baseline across various data precisions, achieving an efficiency of similar to 3.1 TOp/s/W.
引用
收藏
页码:341 / 344
页数:4
相关论文
共 50 条
  • [1] Near-sensor and in-sensor computing
    Feichi Zhou
    Yang Chai
    Nature Electronics, 2020, 3 : 664 - 671
  • [2] Near-sensor and in-sensor computing
    Zhou, Feichi
    Chai, Yang
    NATURE ELECTRONICS, 2020, 3 (11) : 664 - 671
  • [3] Near-sensor image processing
    Åström, A
    Forchheimer, R
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 105, 1999, 105 : 1 - 76
  • [4] PINSim: A Processing In- and Near-Sensor Simulator to Model Intelligent Vision Sensors
    Tabrizchi, Sepehr
    Morsali, Mehrdad
    Pan, David
    Angizi, Shaahin
    Roohi, Arman
    IEEE COMPUTER ARCHITECTURE LETTERS, 2025, 24 (01) : 17 - 20
  • [5] A Neuromorphic Electrothermal Processor for Near-Sensor Computing
    Shirmohammadli, Vahideh
    Bahreyni, Behraad
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (11):
  • [6] Neuromorphic Near-Sensor Computing: From Event-Based Sensing to Edge Learning
    Safa, Ali
    Van Assche, Jonah
    Alea, Mark Daniel
    Catthoor, Francky
    Gielen, Georges G. E.
    IEEE MICRO, 2022, 42 (06) : 88 - 95
  • [7] Near-sensor image processing - Theory and practice
    Astrom, A
    Eklund, JE
    Forchheimer, R
    ADVANCED FOCAL PLANE ARRAYS AND ELECTRONIC CAMERAS, 1996, 2950 : 242 - 253
  • [8] Binary Weighted Memristive Analog Deep Neural Network for Near-Sensor Edge Processing
    Krestinskaya, O.
    James, A. P.
    2018 IEEE 18TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2018,
  • [9] Precision encoder grating mounting: a near-sensor computing approach
    Jingyi Yu
    Runjiang Dou
    Wennong Zhang
    Xiuyu Wang
    Jiangtao Xu
    Jian Liu
    Nanjian Wu
    Liyuan Liu
    Scientific Reports, 14 (1)
  • [10] Intelligent Tribotronic Transistors Toward Tactile Near-Sensor Computing
    Lei, Hao
    Yin, Zi-Yi
    Huang, Peihao
    Gao, Xu
    Zhao, Chun
    Wen, Zhen
    Sun, Xuhui
    Wang, Sui-Dong
    ADVANCED FUNCTIONAL MATERIALS, 2024,