scMoMtF: An interpretable multitask learning framework for single-cell multi-omics data analysis

被引:1
|
作者
Lan, Wei [1 ]
Ling, Tongsheng [1 ]
Chen, Qingfeng [1 ]
Zheng, Ruiqing [2 ]
Li, Min [2 ]
Pan, Yi [3 ]
机构
[1] Guangxi Univ, Sch Comp Elect & informat, Guangxi Key Lab Multimedia Commun & Network Techno, Nanning, Guangxi, Peoples R China
[2] Cent South Univ, Sch Comp & Engn, Changsha, Hunan, Peoples R China
[3] Shenzhen Univ Adv Technol, Sch Comp Sci & Control Engn, Shenzhen, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
RNA;
D O I
10.1371/journal.pcbi.1012679
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
With the rapidly development of biotechnology, it is now possible to obtain single-cell multi-omics data in the same cell. However, how to integrate and analyze these single-cell multi-omics data remains a great challenge. Herein, we introduce an interpretable multitask framework (scMoMtF) for comprehensively analyzing single-cell multi-omics data. The scMoMtF can simultaneously solve multiple key tasks of single-cell multi-omics data including dimension reduction, cell classification and data simulation. The experimental results shows that scMoMtF outperforms current state-of-the-art algorithms on these tasks. In addition, scMoMtF has interpretability which allowing researchers to gain a reliable understanding of potential biological features and mechanisms in single-cell multi-omics data.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Multi-omics single-cell analysis
    Nicole Rusk
    Nature Methods, 2019, 16 : 679 - 679
  • [2] Multi-omics single-cell analysis
    Rusk, Nicole
    NATURE METHODS, 2019, 16 (08) : 679 - 679
  • [3] scMCs: a framework for single-cell multi-omics data integration and multiple clusterings
    Ren, Liangrui
    Wang, Jun
    Li, Zhao
    Li, Qingzhong
    Yu, Guoxian
    BIOINFORMATICS, 2023, 39 (04)
  • [4] Clustering single-cell multi-omics data with MoClust
    Yuan, Musu
    Chen, Liang
    Deng, Minghua
    BIOINFORMATICS, 2023, 39 (01)
  • [5] Intricacies of single-cell multi-omics data integration
    Rautenstrauch, Pia
    Vlot, Anna Hendrika Cornelia
    Saran, Sepideh
    Ohler, Uwe
    TRENDS IN GENETICS, 2022, 38 (02) : 128 - 139
  • [6] Integrative analysis of single-cell multi-omics data of the human retina
    Liang, Qingnan
    Cheng, Xuesen
    Owen, Leah
    Shakoor, Akbar
    Vitale, Albert T.
    Husami, Nadine
    Morgan, Denise
    Farkas, Michael H.
    Kim, Ivana K.
    Li, Yumei
    DeAngelis, Margaret M.
    Chen, Rui
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [7] Clustering of single-cell multi-omics data with a multimodal deep learning method
    Xiang Lin
    Tian Tian
    Zhi Wei
    Hakon Hakonarson
    Nature Communications, 13
  • [8] Multimodal deep learning approaches for single-cell multi-omics data integration
    Athaya, Tasbiraha
    Ripan, Rony Chowdhury
    Li, Xiaoman
    Hu, Haiyan
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [9] Clustering of single-cell multi-omics data with a multimodal deep learning method
    Lin, Xiang
    Tian, Tian
    Wei, Zhi
    Hakonarson, Hakon
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [10] A universal framework for single-cell multi-omics data integration with graph convolutional networks
    Gao, Hongli
    Zhang, Bin
    Liu, Long
    Li, Shan
    Gao, Xin
    Yu, Bin
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)