Understanding the swelling behavior of Ti3C2Tx MXene membranes in aqueous media

被引:0
|
作者
Helal, Mohamed I. [1 ]
Sinopoli, Alessandro [1 ]
Gladich, Ivan [1 ]
Tong, Yongfeng [2 ]
Alfahel, Radwan [3 ]
Gomez, Tricia [1 ]
Mahmoud, Khaled A. [1 ]
机构
[1] Hamad Bin Khalifa Univ HBKU, Qatar Fdn, Qatar Environm & Energy Res Inst QEERI, POB 34110, Doha, Qatar
[2] Hamad Bin Khalifa Univ, HBKU Core Labs, POB 34110, Doha, Qatar
[3] Qatar Univ, Dept Civil Engn, Doha, Qatar
关键词
GRAPHENE; INTERCALATION; METAL; SEPARATION; MODEL;
D O I
10.1039/d4ta04079a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional (2D) lamellar MXene membranes have demonstrated ultrafast water permeance and outstanding ion rejection performance, thus showing great potential for water purification. However, as typical 2D lamellar structures, MXene membranes tend to swell in aqueous media caused by increased d-spacing, leading to deteriorated mechanical stability and reduced ion sieving efficiency. Despite several chemical and physical confinement attempts to obtain stable ion sieving performance of the membranes, there is still limited knowledge of the main cause of this swelling problem. In this systematic study, the interlayer spacing of the MXene membrane lamellar sheets was altered by intercalating different valence ions (Na+, Ca2+, and Al3+), then we used simultaneous in situ environmental scanning electron microscopy and in situ XRD to investigate the root cause of the swelling phenomenon of pristine and ion-intercalated Ti3C2Tx MXene membranes under different environmental conditions. Molecular dynamics simulations were used to fundamentally understand the structure and mobility of water in the MXene channel. As predicted using the theoretical model, the d-space decreases by increasing the charge of the ions in the solution. Trivalent cation intercalated membranes were found to collapse more easily at high temperatures, which could make such membranes suitable for water desalination membranes and temperature sensor applications. Ca and Al intercalation in the MXene membrane have provided more stability to interlayer spacing, hence causing less swelling and improved rejection of ions and other molecules. On the other hand, monovalent cation intercalated membranes were substantially more sensitive to relative humidity increase, making them less suitable for water treatment but rather attractive for humidity sensor applications. This work contributes to the rational design of stable 2D membranes for water purification and sensing applications.
引用
收藏
页码:30729 / 30742
页数:14
相关论文
共 50 条
  • [31] Micromechanics of Ti3C2Tx MXene reinforced poly(vinyl alcohol) nanocomposites
    Dong, Ming
    Hu, Yi
    Zhang, Han
    Bilotti, Emiliano
    Pugno, Nicola
    Dunstan, David
    Papageorgiou, Dimitrios G.
    COMPOSITES PART C: OPEN ACCESS, 2024, 13
  • [32] Adsorption of Uremic Toxins Using Ti3C2Tx MXene for Dialysate Regeneration
    Zhao, Qi
    Seredych, Mykola
    Precetti, Eliot
    Shuck, Christopher E.
    Harhay, Meera
    Pang, Rui
    Shan, Chong-Xin
    Gogotsi, Yury
    ACS NANO, 2020, 14 (09) : 11787 - 11798
  • [33] Ecotoxicological assessment of Ti3C2Tx (MXene) using a zebrafish embryo model
    Nasrallah, Gheyath K.
    Al-Asmakh, Maha
    Rasool, Kashif
    Mahmoud, Khaled A.
    ENVIRONMENTAL SCIENCE-NANO, 2018, 5 (04) : 1002 - 1011
  • [34] Step-by-Step Guide for Synthesis and Delamination of Ti3C2Tx MXene
    Thakur, Anupma
    Chandran, B. S. Nithin
    Davidson, Karis
    Bedford, Annabelle
    Fang, Hui
    Im, Yooran
    Kanduri, Vaishnavi
    Wyatt, Brian C.
    Nemani, Srinivasa Kartik
    Poliukhova, Valeriia
    Kumar, Ravi
    Fakhraai, Zahra
    Anasori, Babak
    SMALL METHODS, 2023, 7 (08)
  • [35] Electrochemical Impedance Analysis of Ti3C2Tx MXene for Pseudocapacitive Charge Storage
    Anjum, Nafiza
    Al Noman, Abdullah
    Rahman, Md Mostafizur
    Sen, Debashis
    Lazenby, Robert A.
    Okoli, Okenwa I.
    JOURNAL OF COMPOSITES SCIENCE, 2025, 9 (03):
  • [36] Layer-dependent frictional properties of Ti3C2Tx MXene nanosheets
    Pendyala, Prashant
    Lee, Juyun
    Kim, Seon Joon
    Yoon, Eui-Sung
    APPLIED SURFACE SCIENCE, 2022, 603
  • [37] Rhenium anchored Ti3C2Tx (MXene) nanosheets for electrocatalytic hydrogen production
    Suragtkhuu, Selengesuren
    Sunderiya, Suvdanchimeg
    Purevdorj, Solongo
    Bat-Erdene, Munkhjargal
    Sainbileg, Batjargal
    Hayashi, Michitoshi
    Bati, Abdulaziz S. R.
    Shapter, Joseph G.
    Davaasambuu, Sarangerel
    Batmunkh, Munkhbayar
    NANOSCALE ADVANCES, 2023, 5 (02): : 349 - 355
  • [38] Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti3C2Tx MXene
    Sarycheva, Asia
    Gogotsi, Yury
    CHEMISTRY OF MATERIALS, 2020, 32 (08) : 3480 - 3488
  • [39] Enhancing pseudocapacitive intercalation in Ti3C2Tx MXene with molecular crowding electrolytes
    Chen, Chaofan
    de Kogel, Albert
    Weijers, Mark
    Bannenberg, Lars J.
    Wang, Xuehang
    2D MATERIALS, 2024, 11 (01)
  • [40] Diffusion kinetics of ionic charge carriers across Ti3C2TX MXene-aqueous electrochemical interfaces
    Yadav, Suman
    Kurra, Narendra
    ENERGY STORAGE MATERIALS, 2024, 65