Low-Light Image Enhancement Network Based on Multiscale Interlayer Guidance and Reflection Component Fusion

被引:0
|
作者
Yin, Mohan [1 ]
Yang, Jianbai [1 ]
机构
[1] Harbin Normal Univ, Coll Comp Sci & Informat Engn, Harbin 150025, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Image color analysis; Reflectivity; Noise measurement; Lighting; Brightness; Image resolution; Image enhancement; Inter-layer guidance; low-light image enhancement; multi-scale; Retinex; reflectance component; HISTOGRAM EQUALIZATION; CONTRAST ENHANCEMENT; QUALITY ASSESSMENT; RETINEX;
D O I
10.1109/ACCESS.2024.3461859
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Images captured under the influence of external factors (such as low light, nighttime, complex weather conditions, etc.) often exhibit unpleasant visual effects. Previous image enhancement methods have overly focused on improving brightness, neglecting the preservation and enhancement of image detail and color features. Therefore, this paper proposes a network with multi-scale interlayer guidance and reflection component fusion (defined as MGRF-Net) is proposed for low-light image enhancement. Among them, the reflection component is obtained from the decomposition sub-network by Retinex decomposition, and is simultaneously enhanced with the low-light image through the multiscale interlayer guidance sub-network, so as to obtain the clear and convergent illuminance estimation and the low-noise reflection component, and finally the two are fused to obtain the final enhanced image. Specifically, the multi-scale inter-layer guidance sub-network introduces three efficient fusion feature modules: the feature guided enhancement module, the feature learning module, and the feature cross-learning module. These modules are respectively used to extract the underlying feature information to guide the upper layer of features for detail enhancement, enhance and converge the guided features of each layer, and preserve the skip connection and up-sampling features in the U-Net structure. Additionally, three feature extraction modules are designed: spatial-channel attention, global feature-extraction block, and multi-scale extraction block to extract local and global features. Experimental results show that the proposed method outperforms other advanced methods in both visual effects and quantitative aspects.
引用
收藏
页码:140185 / 140210
页数:26
相关论文
共 50 条
  • [41] A survey on image enhancement for Low-light images
    Guo, Jiawei
    Ma, Jieming
    Garcia-Fernandez, Angel F.
    Zhang, Yungang
    Liang, Haining
    HELIYON, 2023, 9 (04)
  • [42] Low-light image enhancement based on variational image decomposition
    Su, Yonggang
    Yang, Xuejie
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [43] Low-Light Image Enhancement Network Based on Multi-Scale Residual Feature Integration
    Huang, Shuying
    Liu, Hebin
    Yang, Yong
    Wan, Weiguo
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [44] RCFNC: a resolution and contrast fusion network with ConvLSTM for low-light image enhancement
    Li, Canlin
    Song, Shun
    Wang, Xinyue
    Liu, Yan
    Bi, Lihua
    VISUAL COMPUTER, 2024, 40 (04) : 2793 - 2806
  • [45] Frequency-aware network for low-light image enhancement
    Shang, Kai
    Shao, Mingwen
    Qiao, Yuanjian
    Liu, Huan
    COMPUTERS & GRAPHICS-UK, 2024, 118 : 210 - 219
  • [46] Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement
    Jiang, Qiuping
    Mao, Yudong
    Cong, Runmin
    Ren, Wenqi
    Huang, Chao
    Shao, Feng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19440 - 19455
  • [47] Interpretable Optimization-Inspired Unfolding Network for Low-Light Image Enhancement
    Wu, Wenhui
    Weng, Jian
    Zhang, Pingping
    Wang, Xu
    Yang, Wenhan
    Jiang, Jianmin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (04) : 2545 - 2562
  • [48] Low-light image enhancement based on normal-light image degradation
    Zhao, Bai
    Gong, Xiaolin
    Wang, Jian
    Zhao, Lingchao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (05) : 1409 - 1416
  • [49] Attention Guided Low-Light Image Enhancement with a Large Scale Low-Light Simulation Dataset
    Lv, Feifan
    Li, Yu
    Lu, Feng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (07) : 2175 - 2193
  • [50] Retinex-Based Fast Algorithm for Low-Light Image Enhancement
    Liu, Shouxin
    Long, Wei
    He, Lei
    Li, Yanyan
    Ding, Wei
    ENTROPY, 2021, 23 (06)