Low-Light Image Enhancement Network Based on Multiscale Interlayer Guidance and Reflection Component Fusion

被引:0
|
作者
Yin, Mohan [1 ]
Yang, Jianbai [1 ]
机构
[1] Harbin Normal Univ, Coll Comp Sci & Informat Engn, Harbin 150025, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Image color analysis; Reflectivity; Noise measurement; Lighting; Brightness; Image resolution; Image enhancement; Inter-layer guidance; low-light image enhancement; multi-scale; Retinex; reflectance component; HISTOGRAM EQUALIZATION; CONTRAST ENHANCEMENT; QUALITY ASSESSMENT; RETINEX;
D O I
10.1109/ACCESS.2024.3461859
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Images captured under the influence of external factors (such as low light, nighttime, complex weather conditions, etc.) often exhibit unpleasant visual effects. Previous image enhancement methods have overly focused on improving brightness, neglecting the preservation and enhancement of image detail and color features. Therefore, this paper proposes a network with multi-scale interlayer guidance and reflection component fusion (defined as MGRF-Net) is proposed for low-light image enhancement. Among them, the reflection component is obtained from the decomposition sub-network by Retinex decomposition, and is simultaneously enhanced with the low-light image through the multiscale interlayer guidance sub-network, so as to obtain the clear and convergent illuminance estimation and the low-noise reflection component, and finally the two are fused to obtain the final enhanced image. Specifically, the multi-scale inter-layer guidance sub-network introduces three efficient fusion feature modules: the feature guided enhancement module, the feature learning module, and the feature cross-learning module. These modules are respectively used to extract the underlying feature information to guide the upper layer of features for detail enhancement, enhance and converge the guided features of each layer, and preserve the skip connection and up-sampling features in the U-Net structure. Additionally, three feature extraction modules are designed: spatial-channel attention, global feature-extraction block, and multi-scale extraction block to extract local and global features. Experimental results show that the proposed method outperforms other advanced methods in both visual effects and quantitative aspects.
引用
收藏
页码:140185 / 140210
页数:26
相关论文
共 50 条
  • [21] Low-light image enhancement based on deep learning: a survey
    Wang, Yong
    Xie, Wenjie
    Liu, Hongqi
    OPTICAL ENGINEERING, 2022, 61 (04)
  • [22] Effective low-light image enhancement with multiscale and context learning network
    Li, Qiao
    Jiang, Bin
    Bo, Xiaochen
    Yang, Chao
    Wu, Xu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (10) : 15271 - 15286
  • [23] Wavelet-based enhancement network for low-light image
    Hu, Xiaopeng
    Liu, Kang
    Yin, Xiangchen
    Gao, Xin
    Jiang, Pingsheng
    Qian, Xu
    DISPLAYS, 2025, 87
  • [24] A Joint Network for Low-Light Image Enhancement Based on Retinex
    Jiang, Yonglong
    Zhu, Jiahe
    Li, Liangliang
    Ma, Hongbing
    COGNITIVE COMPUTATION, 2024, 16 (06) : 3241 - 3259
  • [25] Joint Correcting and Refinement for Balanced Low-Light Image Enhancement
    Yu, Nana
    Shi, Hong
    Han, Yahong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 6310 - 6324
  • [26] DBENet: Dual-Branch Brightness Enhancement Fusion Network for Low-Light Image Enhancement
    Chen, Yongqiang
    Wen, Chenglin
    Liu, Weifeng
    He, Wei
    ELECTRONICS, 2023, 12 (18)
  • [27] Colorization-Inspired Customized Low-Light Image Enhancement by a Decoupled Network
    Jin, Zhi
    Wang, Chenxi
    Luo, Xing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [28] Low-Light Image Enhancement With SAM-Based Structure Priors and Guidance
    Li, Guanlin
    Zhao, Bin
    Li, Xuelong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10854 - 10866
  • [29] An Improved CycleGAN-Based Model for Low-Light Image Enhancement
    Tang, Guangyi
    Ni, Jianjun
    Chen, Yan
    Cao, Weidong
    Yang, Simon X.
    IEEE SENSORS JOURNAL, 2024, 24 (14) : 21879 - 21892
  • [30] A Pipeline Neural Network for Low-Light Image Enhancement
    Guo, Yanhui
    Ke, Xue
    Ma, Jie
    Zhang, Jun
    IEEE ACCESS, 2019, 7 : 13737 - 13744