Modelling multivariate spatio-temporal data with identifiable variational autoencoders

被引:0
|
作者
Sipila, Mika [1 ]
Cappello, Claudia
De Iaco, Sandra [2 ]
Nordhausen, Klaus [1 ]
Taskinen, Sara
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
[2] Univ Salento, Sect Math & Stat, DES, Lecce, Italy
关键词
Blind source separation; Dimension estimation; Kriging; Meteorological data; Shapley values; BLIND SOURCE SEPARATION; SPACE; PREDICTION; SELECTION;
D O I
10.1016/j.neunet.2024.106774
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modelling multivariate spatio-temporal data with complex dependency structures is a challenging task but can be simplified by assuming that the original variables are generated from independent latent components. If these components are found, they can be modelled univariately. Blind source separation aims to recover the latent components by estimating the unknown linear or nonlinear unmixing transformation based on the observed data only. In this paper, we extend recently introduced identifiable variational autoencoder to the nonlinear nonstationary spatio-temporal blind source separation setting and demonstrate its performance using comprehensive simulation studies. Additionally, we introduce two alternative methods for the latent dimension estimation, which is a crucial task in order to obtain the correct latent representation. Finally, we illustrate the proposed methods using a meteorological application, where we estimate the latent dimension and the latent components, interpret the components, and show how nonstationarity can be accounted and prediction accuracy can be improved by using the proposed nonlinear blind source separation method as a preprocessing method.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Modelling spatio-temporal random fields
    Schmiegel, J
    Barndorff-Nielsen, OE
    Eggers, HC
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2005, 101 (11-12) : 512 - 512
  • [22] Spatio-temporal stochastic modelling (METMAVI)
    Raquel Menezes
    A. Manuela Gonçalves
    Stochastic Environmental Research and Risk Assessment, 2014, 28 : 1167 - 1169
  • [23] Spatio-Temporal Modelling of Noise Pollution
    Napi, Nur Nazmi Liyana Mohd
    Zainal, Mohd Hafizul
    Abdullah, Samsuri
    Dom, Nazri Che
    Abu Mansor, Amalina
    Ahmed, Ali Najah
    Ismail, Marzuki
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2021, 13 (03): : 125 - 131
  • [24] Spatio-temporal stochastic modelling (METMAVI)
    Menezes, Raquel
    Manuela Goncalves, A.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (05) : 1167 - 1169
  • [25] Modelling spatio-temporal variability of temperature
    Xiaofeng Cao
    Ostap Okhrin
    Martin Odening
    Matthias Ritter
    Computational Statistics, 2015, 30 : 745 - 766
  • [26] Modelling of spatio-temporal variation of snowcover
    Schaumberger, Andreas
    Formayer, Herbert
    Tiefenbach, Priska
    Grillenberger, Joerg
    Strobl, Josef
    MITTEILUNGEN DER OSTERREICHISCHEN GEOGRAPHISCHEN GESELLSCHAFT, 2008, 150 : 163 - 182
  • [27] SPATIO-TEMPORAL MODELLING OF EXTREME STORMS
    Economou, Theodoros
    Stephenson, David B.
    Ferro, Christopher A. T.
    ANNALS OF APPLIED STATISTICS, 2014, 8 (04): : 2223 - 2246
  • [28] Modelling spatio-temporal variability of temperature
    Cao, Xiaofeng
    Okhrin, Ostap
    Odening, Martin
    Ritter, Matthias
    COMPUTATIONAL STATISTICS, 2015, 30 (03) : 745 - 766
  • [29] Multivariate Kalman filtering for spatio-temporal processes
    Guillermo Ferreira
    Jorge Mateu
    Emilio Porcu
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 4337 - 4354
  • [30] Multivariate Kalman filtering for spatio-temporal processes
    Ferreira, Guillermo
    Mateu, Jorge
    Porcu, Emilio
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (12) : 4337 - 4354