Spatial Interpolation of Bridge Scour Point Cloud Data Using Ordinary Kriging Method

被引:0
作者
Shanmugam, Navanit Sri [1 ]
Chen, Shen-En [1 ]
Tang, Wenwu [2 ]
Chavan, Vidya Subhash [3 ]
Diemer, John [4 ]
Allan, Craig [4 ]
Shukla, Tarini [3 ]
Chen, Tianyang [4 ]
Slocum, Zachery [4 ]
Janardhanam, R. [1 ]
机构
[1] Univ North Carolina Charlotte, Dept Civil & Environm Engn, Charlotte, NC 28223 USA
[2] Univ North Carolina Charlotte, Ctr Appl Geog Informat Sci, Dept Geog & Earth Sci, Charlotte, NC 28223 USA
[3] Univ North Carolina Charlotte, Dept Civil & Environm Engn, Infrastruct & Environm Syst Ph D Program, Charlotte, NC 28223 USA
[4] Univ North Carolina Charlotte, Dept Geog & Earth Sci, Charlotte, NC 28223 USA
关键词
Bridge scour; Light detection and ranging (LiDAR) scan; Data void; Kriging; REGRESSION;
D O I
10.1061/JPCFEV.CFENG-4218
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Scour is a critical condition change for a bridge hydraulic system, and terrestrial light detection and ranging (LiDAR) scans have been suggested as a way to quantify the scour conditions. With LiDAR point cloud data, a temporal record of scour can be established. However, there are limitations to LiDAR scans. For example, laser light does not bend and can be obstructed by objects along the light path, resulting in missing geometric information behind the obstacles, thereby creating a void in the point cloud data. To "fill in" the missing data, spatial interpolation of three-dimensional (3D) LiDAR point cloud data using ordinary kriging (OK) is suggested, and actual field data from scanning three scoured bridge piers is presented to demonstrate the application. Kriging is a geostatistical interpolation technique and OK assumes that the spatial variation of the phenomenon or object being considered is random and intrinsically stationary with a constant mean. Here, the complete scour envelope is reconstructed using OK and is shown to have excellent results.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Strain estimation using ordinary Kriging interpolation
    Ghiasi, Y.
    Nafisi, V.
    SURVEY REVIEW, 2016, 48 (350) : 361 - 366
  • [2] Spatial Interpolation of Meteorologic Variables in Vietnam using the Kriging Method
    Xuan Thanh Nguyen
    Ba Tung Nguyen
    Khac Phong Do
    Quang Hung Bui
    Thi Nhat Thanh Nguyen
    Van Quynh Vuong
    Thanh Ha Le
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2015, 11 (01): : 134 - 147
  • [3] A Spatial Interpolation Method for Meteorological Data Based on a Hybrid Kriging and Machine Learning Approach
    Huang, Julong
    Lu, Chuhan
    Huang, Dingan
    Qin, Yujing
    Xin, Fei
    Sheng, Hao
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2024, 44 (15) : 5371 - 5380
  • [4] Uncertainty-aware temperature interpolation for measurement rooms using ordinary Kriging
    Vedurmudi, Anupam Prasad
    Janzen, Katharina
    Nagler, Markus
    Eichstaedt, Sascha
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (06)
  • [5] Spatiotemporal interpolation and forecast of irradiance data using Kriging
    Jamaly, Mohammad
    Kleissl, Jan
    SOLAR ENERGY, 2017, 158 : 407 - 423
  • [6] The Method of Electromagnetic Environment Map Construction Based on Kriging Spatial Interpolation
    Shan, Jing
    Shao, Wei
    Xue, Hong
    Xu, Yangli
    Mao, Danlei
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND COMPUTER AIDED EDUCATION (ICISCAE 2018), 2018, : 212 - 217
  • [7] Modeling African equatorial ionosphere using ordinary Kriging interpolation technique for GNSS applications
    O. E. Abe
    A. B. Rabiu
    O. S. Bolaji
    E. O. Oyeyemi
    Astrophysics and Space Science, 2018, 363
  • [8] Modeling African equatorial ionosphere using ordinary Kriging interpolation technique for GNSS applications
    Abe, O. E.
    Rabiu, A. B.
    Bolaji, O. S.
    Oyeyemi, E. O.
    ASTROPHYSICS AND SPACE SCIENCE, 2018, 363 (08)
  • [9] Inverse Distance Weighting and Kriging Spatial Interpolation for Data Center Thermal Monitoring
    Oktavia, Esi
    Widyawan
    Mustika, I. Wayan
    2016 1ST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, INFORMATION SYSTEMS AND ELECTRICAL ENGINEERING (ICITISEE), 2016, : 69 - 74
  • [10] Spatial Interpolation to Predict Missing Attributes in GIS Using Semantic Kriging
    Bhattacharjee, Shrutilipi
    Mitra, Pabitra
    Ghosh, Soumya K.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (08): : 4771 - 4780