Experimental investigation on the effect of channel geometry on performance heterogeneity in hydrogen PEM fuel cell

被引:1
作者
Casadei, Delio [1 ]
Verducci, Francesco [1 ]
Grimaldi, Amedeo [1 ]
Croci, Diego [2 ]
Palmieri, Alessandro [2 ]
Bianchi, Roberto [2 ]
Picciotti, Gianmario [2 ]
Casalegno, Andrea [1 ]
Baricci, Andrea [1 ]
机构
[1] Politecn Milan, Energy Dept, Via Lambruschini 4a, I-20156 Milan, Italy
[2] Eldor Corp SpA, Via Don Paolo Berra 18, I-22030 Orsenigo, CO, Italy
关键词
Polymer electrolyte membrane fuel cell; Flow field; Heterogeneity; Channel; Electrical contact; Transport resistance; OXYGEN-TRANSPORT RESISTANCE; GAS-DIFFUSION LAYER; FLOW-FIELDS; WATER SATURATION; CATALYST LAYER; BIPOLAR PLATES; IMPACT; POWER;
D O I
10.1016/j.ijhydene.2024.08.515
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Straight parallel graphite-based flow fields are experimentally assessed to evaluate the effect of geometrical parameters on the performance of polymer electrolyte membrane fuel cell. A 1+1D fuel cell model is exploited to evaluate the local operating conditions occurring along various positions of the flow field channel for different load requirements. The estimated operating conditions are implemented in a zero-gradient hardware to perform a broad experimental campaign, conducting tests under controlled and uniform operating conditions. The achieved experimental results depict the impact of the flow field geometry along different positions of the flow field channel under real operating conditions, identifying the individual contributions of the geometric parameters on water transport, oxygen transport and electrical resistance. The proposed methodology provides detailed information on the local operation of a large-area bipolar plate using a small-area sample, demonstrating the effect of rib and channel geometrical parameters on real-world operation of a PEMFC.
引用
收藏
页码:1299 / 1315
页数:17
相关论文
共 72 条
  • [1] Thai C., Brouwer J., Decarbonizing a solar PV and gas turbine microgrid with hydrogen and batteries, Energy Convers Manag, 292, (2023)
  • [2] Ozturk M., Dincer I., A comprehensive review on power-to-gas with hydrogen options for cleaner applications, Int J Hydrogen Energy, 46, pp. 31511-31522, (2021)
  • [3] Pramuanjaroenkij A., Kakac S., The fuel cell electric vehicles: the highlight review, Int J Hydrogen Energy, 48, pp. 9401-9425, (2023)
  • [4] Kampker A., Ayvaz P., Schon C., Karstedt J., Forstmann R., Welker F., Challenges towards large-scale fuel cell production: results of an expert assessment study, Int J Hydrogen Energy, 45, pp. 29288-29296, (2020)
  • [5] Cullen D.A., Neyerlin K.C., Ahluwalia R.K., Mukundan R., More K.L., Borup R.L., Et al., New roads and challenges for fuel cells in heavy-duty transportation, Nat Energy, 6, pp. 462-474, (2021)
  • [6] Xiong K., Wu W., Wang S., Zhang L., Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: a review, Appl Energy, 301, (2021)
  • [7] Kleen G., Gibbons W., Fornaciari J., Heavy-duty fuel cell system cost – 2022, DOE Hydrogen Program Record, pp. 1-11, (2023)
  • [8] Wu C.W., Zhang W., Han X., Zhang Y.X., Ma G.J., A systematic review for structure optimization and clamping load design of large proton exchange membrane fuel cell stack, J Power Sources, 476, (2020)
  • [9] Konno N., Mizuno S., Nakaji H., Ishikawa Y., Development of compact and high-performance fuel cell stack, SAE Int J Altern Powertrains, 4, pp. 123-129, (2015)
  • [10] Wu S., Yang W., Yan H., Zuo X., Cao Z., Li H., Et al., A review of modified metal bipolar plates for proton exchange membrane fuel cells, Int J Hydrogen Energy, 46, pp. 8672-8701, (2021)