Low-temperature preparation of nano-sized particles of some alkali titanates by solution process

被引:0
作者
Kobayashi, Megumi [1 ]
Fujimoto, Kenjiro [1 ]
Ito, Shigeru [1 ]
机构
[1] Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
来源
Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy | 2009年 / 56卷 / 05期
关键词
Alkali metal elements; Nano-sized particles; Solution process; Titanate;
D O I
10.2497/jjspm.56.225
中图分类号
学科分类号
摘要
Alkali ions were co-precipitated with titanium hydroxide gels. When Ti(S04)2 solution was added to KOH solution with K: Ti = 10:1 (in molar ratio), the potassium remains in the precipitated gel, in spite of several times of washing. Excess amount of alkali and pH > 9 were the essential conditions for the co-precipitation. Similar results were obtained for the other alkali elements; Li and Na. Nano-sized particles of K 2O-6TiO2, Li2O-TiO2 and Na 20-3TiO2 with 20-30nm in size were respectively obtained by heating the precipitates at 500 or 600 °C. In addition, the thin films of alkali titanates were obtained on Si substrate by dripping Ti(S0 4)2 solution and MOH solution for 30-60 min.
引用
收藏
页码:225 / 231
页数:6
相关论文
共 17 条
  • [1] Asada Y., Fujimoto K., Ito S., Deposition parameters and micro-structure in the TiO<sub>2</sub> thin film prepared by dripping an aqueous solution, Conference of the Surface Finishing Society of Japan, (2006)
  • [2] Barket J., In-situ measurement of the thickness changes associated with cycling of prismatic lithium ion batteries based on LiMn<sub>2</sub>O<sub>4</sub> and LiCoO<sub>2</sub>, Electtochimica Acta, 45, pp. 235-242, (1999)
  • [3] Fujimoto K., Ito S., Watanabe M., Crystal growth and refinement of K<sub>1.88</sub>Ga<sub>1.88</sub>Sn <sub>g.12</sub>O<sub>16</sub> hollandite-type compound, Solid State Ionics, 177, pp. 1901-1904, (2006)
  • [4] Hattori T., Ishigame M., Electronic band structures of and ionic conduction in β-alumina type superionic conductors, Solid State Ionics, 109, pp. 197-205, (1998)
  • [5] Sauvet A.-L., Baliteau S., Lopez C., Fabry P., Synthesis and characterization of sodium titanates Na<sub>2</sub>Ti <sub>3</sub>0<sub>7</sub> and Na<sub>2</sub>Ti<sub>6</sub>O<sub>13</sub>, J. Solid State Chem., 177, pp. 4508-4515, (2004)
  • [6] Wadsley A.D., Mumme W.G., The crystal structure of Na<sub>2</sub>Ti<sub>7</sub>0<sub>15</sub>, an ordered intergrowth of Na<sub>2</sub>Ti<sub>6</sub>O<sub>13</sub> and Na <sub>2</sub>Ti<sub>g</sub>O<sub>17</sub>, Acta Cryst., 392 B24, (1968)
  • [7] Dion M., Piffard Y., Tournoux M., The tetratitanates M<sub>2</sub>Ti<sub>4</sub>0<sub>9</sub>(M=Li,Na,K,Tl, Ag), J. Inorg. Nucl., 40, pp. 918-919, (1978)
  • [8] Izawa H., Kikkawa S., Koizumi M., Effect of intercalated alkylammonium on cation exchange properties of H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>, J. Solid State Chem., 69, pp. 336-342, (1987)
  • [9] Holzinger M., Maier J., Sitte W., Potentiometric detection of complex gases: Application to CO<sub>2</sub>, Solid State Ionics, 94, pp. 217-225, (1997)
  • [10] Du G.H., Chen Q., Han P.D., Yu Y., Peng L.M., Potassium titanate nanowires: Structure, growth, and optical properties, Physical Review B, 67, (2003)