A parsimonious dynamic mixture for heavy-tailed distributions

被引:0
作者
Bee, Marco [1 ]
机构
[1] Univ Trento, Dept Econ & Management, Trento, Italy
关键词
Dynamic mixtures; Exponential distribution; Noisy cross-entropy; Weight function;
D O I
10.1016/j.matcom.2024.11.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dynamic mixture distributions are convenient models for highly skewed and heavy-tailed data. However, estimation has proved to be challenging and computationally expensive. To address this issue, we develop a more parsimonious model, based on a one-parameter weight function given by the exponential cumulative distribution function. Parameter estimation is carried out via maximum likelihood, approximate maximum likelihood and noisy cross-entropy. Simulation experiments and real-data analyses suggest that approximate maximum likelihood is the best method in terms of RMSE, albeit at a high computational cost. With respect to the version of the dynamic mixture with weight equal to the two-parameter Cauchy cumulative distribution function, the reduced flexibility of the present model is more than compensated by better statistical and computational properties.
引用
收藏
页码:193 / 206
页数:14
相关论文
共 26 条
[11]  
Debbabi Nehla, 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), P3440, DOI 10.1109/ICASSP.2014.6854239
[12]  
Debbabi N, 2017, Arxiv, DOI arXiv:1612.03974
[13]   The quantitative modeling of operational risk: between g-and-h and EVT [J].
Degen, Matthias ;
Embrechts, Paul ;
Lambrigger, Dominik D. .
ASTIN BULLETIN-THE JOURNAL OF THE INTERNATIONAL ACTUARIAL ASSOCIATION, 2007, 37 (02) :265-291
[14]  
Frigessi A., 2002, EXTREMES, V5, P219, DOI DOI 10.1023/A:1024072610684
[15]   Rank-1/2: A Simple Way to Improve the OLS Estimation of Tail Exponents [J].
Gabaix, Xavier ;
Ibragimov, Rustam .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2011, 29 (01) :24-39
[16]  
Hajivassiliou VA, 1994, HDB ECONOMETRICS, V4, P2383, DOI DOI 10.1016/S1573-4412(05)80009-1
[17]  
Kleiber C., 2003, Statistical Size Distributions in Economics and Actuarial Sciences
[18]  
Klugman S.A., 2012, Loss models: from data to decisions, V4th
[19]  
Kroese DP, 2013, HANDB STAT, V31, P19, DOI 10.1016/B978-0-444-53859-8.00002-3
[20]  
Malevergne Y, 2009, SWISS FINANCE I RES, P09, DOI DOI 10.2139/SSRN.1479481