Research progress on the direct regeneration technology for cathode materials from spent lithium-ion batteries

被引:0
|
作者
Li, Hongyan [1 ]
Xie, Shuhan [1 ]
Zhang, Yanru [1 ]
Wang, Yongjing [1 ]
Wang, Yonghao [1 ]
Lyu, Yuancai [1 ]
Lin, Chunxiang [1 ]
Li, Xiaojuan [1 ]
机构
[1] College of Environment & Safety Engineering, Fuzhou University, Fujian, Fuzhou,350108, China
关键词
D O I
10.16085/j.issn.1000-6613.2023-1356
中图分类号
学科分类号
摘要
With the rapid growth of the demand for lithium-ion battery (LIBs), a large number of waste LIBs will be produced. If not disposed of properly, it will bring serious environmental pollution problems. The cathode materials of spent LIBs contain a large number of rare valuable metals, and the recovery of these metals will produce both environmental and economic benefits. Compared with the traditional separation, purification and recovery technologies of metal components from cathode materials, the strategy of direct regeneration of cathode materials has attracted much attention due to its advantages of simple process, low energy consumption, short recycling cycle and high added value of products. Six direct regeneration technologies for cathode materials from spent LIBs such as coprecipitation method, sol-gel method, solid phase sintering method, hydrothermal method, ion thermal/molten salt method and electrochemical repair method were reviewed and their advantages and disadvantages were also summarized. Among them, coprecipitation method and sol-gel method had some limitations in industrial application because of their relatively complex steps, high equipment requirements and reagent cost. Solid phase sintering method, hydrothermal method, ion thermal/molten salt method and electrochemical repair method had great opportunities for development because of their convenience and economy. In addition, the prospect and development trend of direct recycling of cathode materials from spent LIBs were prospected in order to provide reference for the research in the field of spent LIBs recycling. © 2024 Chemical Industry Press Co., Ltd.. All rights reserved.
引用
收藏
页码:5207 / 5216
相关论文
共 50 条
  • [31] Research progress on coating modification of lithium-rich cathode materials for lithium-ion batteries
    Yang Y.
    He Y.-P.
    Zhang P.-P.
    Guo Z.-C.
    Hang H.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (03): : 367 - 379
  • [32] Research progress of cathode materials for lithium-ion battery
    Li Z.
    Li B.
    Feng D.
    Zeng T.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2022, 39 (02): : 513 - 527
  • [33] Solvothermal strategy for direct regeneration of high-performance cathode materials from spent lithium-ion battery
    Zhou, Jiahui
    Zhou, Xia
    Yu, Wenhao
    Shang, Zhen
    Yang, Yue
    Xu, Shengming
    NANO ENERGY, 2024, 120
  • [34] Scalable Direct Recycling of Cathode Black Mass from Spent Lithium-Ion Batteries
    Gupta, Varun
    Yu, Xiaolu
    Gao, Hongpeng
    Brooks, Christopher
    Li, Weikang
    Chen, Zheng
    ADVANCED ENERGY MATERIALS, 2023, 13 (06)
  • [35] Enabling Future Closed-Loop Recycling of Spent Lithium-Ion Batteries: Direct Cathode Regeneration
    Yang, Tingzhou
    Luo, Dan
    Yu, Aiping
    Chen, Zhongwei
    ADVANCED MATERIALS, 2023, 35 (36)
  • [36] Pollutant-free pyrolysis strategy for direct upgrading of cathode materials from spent lithium-ion batteries
    Li, Pengwei
    Luo, Shaohua
    Hao, Guodong
    Sun, Kuo
    Liu, Qiuyue
    Moller, Martin
    Wang, Deyong
    Kristensen, Peter Kjaer
    Gurevich, Leonid
    Jensen, Lars Rosgaard
    Wang, Li
    He, Xiangming
    JOURNAL OF HAZARDOUS MATERIALS, 2025, 481
  • [37] Direct regeneration of spent lithium-ion batteries: A mini-review
    Li, Pengwei
    Liu, Qiuyue
    Moller, Martin
    Wang, Deyong
    Jensen, Lars Rosgaard
    Xia, Xiaoning
    MATERIALS LETTERS, 2024, 357
  • [38] Recent recycling methods for spent cathode materials from lithium-ion batteries: A review
    Dhanabalan, Karmegam
    Aruchamy, Kanakaraj
    Sriram, Ganesan
    Sadhasivam, Thangarasu
    Oh, Tae Hwan
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 139 : 111 - 124
  • [39] A promising method for recovery of graphite and cathode materials from spent lithium-ion batteries
    Yu Wang
    Yanan Tu
    ZhiQiang Xu
    Xi Zhang
    Yang Chen
    EnZe Yang
    Ionics, 2022, 28 : 2603 - 2611
  • [40] A promising method for recovery of graphite and cathode materials from spent lithium-ion batteries
    Wang, Yu
    Tu, Yanan
    Xu, ZhiQiang
    Zhang, Xi
    Chen, Yang
    Yang, EnZe
    IONICS, 2022, 28 (06) : 2603 - 2611