Prediction and exploration of emission wavelength (or energy) of luminescent materials based on machine learning

被引:0
|
作者
Shi, Xin [1 ,2 ]
Zhong, Xiaotong [1 ,2 ]
Liu, Wei [3 ]
Wang, Songwei [1 ,2 ]
Zhang, Zhijun [1 ,2 ]
Lin, Li [1 ,2 ]
Chen, Yuguo [4 ]
Zhang, Kehong [4 ]
Zhao, Jingtai [1 ,2 ]
机构
[1] Guilin Univ Elect Technol, Guangxi Key Lab Informat Mat, Guilin 541004, Peoples R China
[2] Guilin Univ Elect Technol, Sch Mat Sci & Engn, Guilin 541004, Peoples R China
[3] Guilin Univ Elect Technol, Sch Mech & Elect Engn, Guilin 541004, Peoples R China
[4] Lanzhou Univ Finance & Econ, Sch Informat Engn, Lanzhou 730101, Gansu, Peoples R China
关键词
Luminescent materials; Machine learning; Xgboost; Emission wavelength; PHOTOLUMINESCENCE PROPERTIES; PHOSPHOR; YELLOW; GREEN; CE3+;
D O I
10.1016/j.jlumin.2024.121024
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the optical field of materials science, it is important to predict the emission wavelength (or energy) of luminescent materials, especially when different dopant ions are involved, which makes the investigation even more complex. The selection of doped ions directly determines the optical properties of luminescent materials, so the accurate prediction of the emission wavelength (or energy) of doped luminescent materials has become a key challenge in scientific research. Traditional theoretical calculation methods often fail to fully consider the complexity of the interactions between ions in different material systems, but machine learning models provide an efficient solution for the research in this field. In this study, we collected a large amount of data of lightemitting materials doped with different ions, combined with their structural feature descriptors, and used a variety of machine learning models to predict the emission wavelength. On the basis of this model we give a prediction of the emission wavelength of the actually synthesized luminous materials in our research group, which are more accurate in the quality of luminous materials doped with Eu3+, Sm3+ plus some Tb3+ ions. In the further analysis of the factors affecting the emission wavelength (or energy) of the luminescent materials, we find that the mean first ionization potential, the mean electron affinity and the mean Pauling electronegativity are the key factors. This study shows that machine learning methods have great application potential in wavelength (or energy) prediction of luminous materials and provide an effective tool for material screening and performance optimization in the future.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine learning modeling for the prediction of materials energy
    Meriem Mouzai
    Saliha Oukid
    Aouache Mustapha
    Neural Computing and Applications, 2022, 34 : 17981 - 17998
  • [2] Machine learning modeling for the prediction of materials energy
    Mouzai, Meriem
    Oukid, Saliha
    Mustapha, Aouache
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (20): : 17981 - 17998
  • [3] Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors
    Sahu, Sunil K.
    Shrivastav, Anil
    Swamy, N. K.
    Dubey, Vikas
    Halwar, D. K.
    Kumar, M. Tanooj
    Rao, M. C.
    JOURNAL OF APPLIED SPECTROSCOPY, 2024, 91 (03) : 669 - 677
  • [4] Machine learning based energy demand prediction
    Kamoona, Ammar
    Song, Hui
    Keshavarzian, Kian
    Levy, Kedem
    Jalili, Mahdi
    Wilkinson, Richardt
    Yu, Xinghuo
    McGrath, Brendan
    Meegahapola, Lasantha
    ENERGY REPORTS, 2023, 9 : 171 - 176
  • [5] An exploration on the machine-learning-based stroke prediction model
    Zhi, Shenshen
    Hu, Xiefei
    Ding, Yan
    Chen, Huajian
    Li, Xun
    Tao, Yang
    Li, Wei
    FRONTIERS IN NEUROLOGY, 2024, 15
  • [6] Machine Learning based prediction of noncentrosymmetric crystal materials
    Song, Yuqi
    Lindsay, Joseph
    Zhao, Yong
    Nasiri, Alireza
    Louis, Steph-Yves
    Ling, Jie
    Hu, Ming
    Hu, Jianjun
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 183
  • [7] Machine Learning-Assisted Carbon Dot Synthesis: Prediction of Emission Color and Wavelength
    Senanayake, Ravithree D.
    Yao, Xiaoxiao
    Froehlich, Clarice E.
    Cahill, Meghan S.
    Sheldon, Trever R.
    McIntire, Mary
    Haynes, Christy L.
    Hernandez, Rigoberto
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (23) : 5918 - 5928
  • [8] Prediction and Construction of Energetic Materials Based on Machine Learning Methods
    Zang, Xiaowei
    Zhou, Xiang
    Bian, Haitao
    Jin, Weiping
    Pan, Xuhai
    Jiang, Juncheng
    Koroleva, M. Yu.
    Shen, Ruiqi
    MOLECULES, 2023, 28 (01):
  • [9] A Review of Performance Prediction Based on Machine Learning in Materials Science
    Fu, Ziyang
    Liu, Weiyi
    Huang, Chen
    Mei, Tao
    NANOMATERIALS, 2022, 12 (17)
  • [10] A Review of Macroscopic Carbon Emission Prediction Model Based on Machine Learning
    Zhao, Yuhong
    Liu, Ruirui
    Liu, Zhansheng
    Liu, Liang
    Wang, Jingjing
    Liu, Wenxiang
    SUSTAINABILITY, 2023, 15 (08)