Improvement of Interference Immunity of Deep Space Communication Systems Exposed to Interference from Stationary Plasma Thrusters

被引:0
作者
Tyapkin, P.S. [1 ]
Vazhenin, N.A. [1 ]
Plokhikh, A.P. [1 ]
机构
[1] Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, Moscow
来源
Russian Aeronautics | 2024年 / 67卷 / 02期
基金
俄罗斯科学基金会;
关键词
blind signal separation; channel with AWGN; deep space communication; GMSK-signal; independent component analysis; interference immunity improvement; simulation modeling; stationary plasma thruster;
D O I
10.3103/S1068799824020247
中图分类号
学科分类号
摘要
Abstract: The purpose of this paper is to analyze the applicability and quantify potential efficiency of using blind signal separation algorithms to counter interference from stationary plasma thrusters. For various values of interference-to-signal ratio and of the average interference pulse-to-pause ratio, the bit error rate dependence on the signal-to-noise bit ratio is determined on the basis of the developed simulation model of the command-programming data transmission channel of deep-space communication system with the modulation-code scheme based on the GMSK-signal (Gaussian Minimum Shift Keying) and the Reed–Solomon code (255,223). The obtained results allow us to assess quantitatively the potential efficiency of using the SOBI algorithm of blind signal separation in the channels with GMSK-signal under the influence of emission from stationary plasma thrusters and thermal noises of the receiving path. © Allerton Press, Inc. 2024.
引用
收藏
页码:427 / 439
页数:12
相关论文
共 21 条
  • [1] Kozubskii K.N., Murashko V.M., Rylov Y.P., Et al., SPT Operate in Space, Fizika Plazmy, 29, 3, pp. 251-266, (2003)
  • [2] Kanev S.V., Petukhov V.G., Popov G.A., Khartov S.A., Electro-Rocket Ramjet Thruster for Compensating the Aerodynamic Drag of a Low-Orbit Spacecraft, Izv. Vuz. Av. Tekhnika, 58, 3, pp. 35-40, (2015)
  • [3] Vazhenin N.A., Obukhov V.A., Plokhikh A.P., Popov G.A., Elektricheskie Raketnye Dvigateli Kosmicheskikh Apparatov I Ikh Vliyanie Na Radiosistemy Kosmicheskoy Svyazi (Electric Rocket Propulsion Systems for Spacecraft and Their Influence on Space Communication Radiosystems), (2013)
  • [4] Plokhikh A.P., Vazhenin N.A., Popov G.A., Analysis for the Influence of Electromagnetic Emission from Stationary Plasma Thrusters on the Interference Immunity of Earth-to-Spacecraft Communication Channel, Kosmicheskie Issledovaniya, 57, 5, pp. 339-346, (2019)
  • [5] Plokhikh A.P., Vazhenin N.A., Principles of Designing the Ground Test Complexes for Studying Interference Emission from Electric Propulsion, Trudy MAI, 60, (2012)
  • [6] Kozhevnikov V.V., Nadiradze A.B., Nazarenko I.P., Frolova Y., Khartov S.A., Electric Propulsion Thrusters: Laboratory Investigation of Jets by Probe Methods, Izv. Vuz. Av. Tekhnika, 61, 4, pp. 150-153, (2018)
  • [7] Advances in Independent Component Analysis and Learning Machine, Bingham, E., et al., Eds. Elsevier, 2015. 308 p.
  • [8] Blind Source Separation: Advances in Theory, Algorithms and Applications, Naik, G.R. and Wang, W., Eds. Springer, 2014, 551 P.
  • [9] Handbook of Blind Source Separation: Independent Component Analysis and Applications. Handbook of Blind Source Separation, 831, (2010)
  • [10] Herrault J., Jutten C., Ans B., Detection de Grandeurs Primitives dans un Message Composite par Une Architecture de Calcul Neuromimetique en Apprentissage non Supervise, Proceedings of GRETSI, pp. 1017-1020, (1985)