Unveiling the particle-feature influence of lithium nickel manganese cobalt oxide on the high-rate performances of practical lithium-ion batteries

被引:0
|
作者
Wang, Hong-Yu [1 ,2 ]
Mei, Shi-Lin [2 ,3 ]
Tan, Xiao-Lan [1 ,2 ]
Lu, Bao-Hua [2 ]
Li, Nan [2 ]
Wang, Zhen-Bo [1 ,4 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers &, State Key Lab Space Power Sources, Harbin 150001, Peoples R China
[2] Xian SaftyEnergy Technol Co Ltd, Xian 710299, Peoples R China
[3] Beijing Inst Technol, Sch Mechatron Engn, State Key Lab Explos Sci & Safety Protect, Beijing 100081, Peoples R China
[4] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518071, Peoples R China
关键词
High-rate lithium-ion batteries; Lithium nickel manganese cobalt oxide; Particle feature; Polycrystalline; Single-crystalline; NI-RICH; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIALS; HIGH-VOLTAGE; CYCLING PERFORMANCE; CO; LINI0.5CO0.2MN0.3O2; SUBSTITUTION; STABILITY;
D O I
10.1016/j.jallcom.2024.177774
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The commercialized lithium nickel manganese cobalt oxides have been extensively applied for high-rate lithiumion batteries due to its collective merits of fast kinetics, high specific capacity, and reasonable cost. The optimization on lithium nickel manganese cobalt oxide particles is crucial for high-rate batteries since the rate capability, storage and cycling stability are highly dependent on the chemical and physical properties of the cathode materials. Herein, the particle-feature influence on the high-rate performances is investigated to unveil the structure-property relationship. Through systematic electrochemical analysis and material characterizations, a direct comparison among commercial lithium nickel manganese cobalt oxide cathode materials with different particle size, doping, and crystalline structures has been performed. It is found that for polycrystalline lithium nickel manganese cobalt oxide materials, appropriate Al and Zr doping and small particle size are beneficial to superior rate performance and cycling stability up to 30 C. While single-crystalline particles show outstanding storage properties compared to polycrystalline particles with similar size and ion doping. Morphological and structural evolution of the lithium nickel manganese cobalt oxide particles after cycling has been revealed including the changed mixing degree of Li+/Ni2+, collapsing of primary particles and different parasitic reactions between the electrolyte and the particle surface. This work can provide direct guidance for the subtle design of efficient cathodes for high-rate lithium-ion batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Review of Modified Nickel-Cobalt Lithium Aluminate Cathode Materials for Lithium-Ion Batteries
    Wang, Ding
    Liu, Weihong
    Zhang, Xuhong
    Huang, Yue
    Xu, Mingbiao
    Xiao, Wei
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2019, 2019
  • [32] Controversy on necessity of cobalt in nickel-rich cathode materials for lithium-ion batteries
    Wang, Rui
    Wang, Lifan
    Fan, Yujie
    Yang, Woochul
    Zhan, Chun
    Liu, Guicheng
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 110 : 120 - 130
  • [33] High-Rate Structure-Gradient Ni-Rich Cathode Material for Lithium-Ion Batteries
    Su, Yuefeng
    Chen, Gang
    Chen, Lai
    Lu, Yun
    Zhang, Qiyu
    Lv, Zhao
    Li, Cong
    Li, Linwei
    Liu, Na
    Tan, Guoqiang
    Bao, Liying
    Chen, Shi
    Wu, Feng
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (40) : 36697 - 36704
  • [34] Cation mixing regulation of cobalt-free high-nickel layered cathodes enables stable and high-rate lithium-ion batteries
    Shi, Tengfei
    Liu, Fang
    Liu, Wenhan
    Wang, Hong
    Han, Kang
    Yang, Chen
    Wu, Jinsong
    Meng, Jiashen
    Niu, Chaojiang
    Han, Chunhua
    Wang, Xuanpeng
    NANO ENERGY, 2024, 123
  • [35] Exploration of physical recovery techniques and economic viability for retired lithium nickel cobalt manganese oxide-type lithium-ion power batteries
    Yang, Gaige
    Wu, Zhongwei
    Zhu, Huabing
    Bi, Haijun
    Bai, Yuxuan
    Wang, Lei
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2024, 26 (06) : 3571 - 3583
  • [36] In-situ synthesis of reduced graphene oxide modified lithium vanadium phosphate for high-rate lithium-ion batteries via microwave irradiation
    Wang, Zhaozhi
    Guo, Haifu
    Yan, Peng
    ELECTROCHIMICA ACTA, 2015, 174 : 26 - 32
  • [37] Polyoxometalate-based complex/graphene for high-rate lithium-ion batteries
    Liu, Jin-Hua
    Yu, Ming-Yue
    Yang, Jin
    Liu, Ying-Ying
    Ma, Jian-Fang
    MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 310
  • [38] Lithium-Ion Batteries with High Rate Capabilities
    Eftekhari, Ali
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (04): : 2799 - 2816
  • [39] A nickel and cobalt bimetal organic framework with high capacity as an anode material for lithium-ion batteries
    Zheng, Wen
    Bi, Wanying
    Gao, Xuenong
    Zhang, Zhengguo
    Yuan, Wenhui
    Li, Li
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) : 5757 - 5764
  • [40] Quasi-anisotropic benefits in electrospun nickel-cobalt-manganese oxide nano-octahedron as anode for lithium-ion batteries
    Ling, Jinkiong
    Karuppiah, Chelladurai
    Das, Santanu
    Singh, Vivek Kumar
    Misnon, Izan Izwan
    Ab Rahim, Mohd Hasbi
    Peng, Shengjie
    Yang, Chun-Chen
    Jose, Rajan
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (20) : 9799 - 9810