FAIRLANE: A multi-agent approach to priority lane management in diverse traffic composition

被引:0
|
作者
Dubey, Rohit K. [1 ]
Dailisan, Damian [1 ]
Sanchez-Vaquerizo, Javier Argota [1 ]
Helbing, Dirk [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Computat Social Sci, Stampfenbachstr 48, CH-8006 Zurich, Switzerland
[2] Complex Sci Hub Vienna, Josefstadter Str 39, A-1080 Vienna, Austria
关键词
Right-of-way; Connected autonomous vehicles; Reinforcement learning; Priority lanes; Urban planning;
D O I
10.1016/j.trc.2024.104919
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
The rise of autonomous driving technologies prompts a reevaluation of traditional urban traffic control and lane management. Dedicated lanes for connected and autonomous vehicles (CAVs), with intermittent access for other vehicles, have been proven to enhance road capacity and reduce underutilization moderately. However, this assumes all non-CAVs are smart vehicles, which is different from the current baseline for the street vehicle mix. Presently, our streets feature a mix of CAVs, smart vehicles, and human-driven vehicles, and the research on dedicated lanes using the realistic mixed traffic environment is missing. In this paper, we investigate the enhancement of road utilization using realistic mixed traffic combinations and identify the penetration rate of CAVs and smart vehicles necessary to improve baseline utilization. Previous studies have focused on lane-management strategies in single-vehicle settings, neglecting the interaction of CAVs with neighboring CAVs and smart vehicles. Therefore, we propose a multi- agent reinforcement learning-based framework to facilitate fair utilization of priority lanes, considering driving comfort, traffic efficiency, and safety during lane-changing. Through multiple experiments on a realistic network, our results demonstrate that the proposed framework significantly improves traffic efficiency, particularly when the penetration rate of CAVs is below 40% and Semi-Autonomous Vehicles (SAVs) constitute 50% of the remaining vehicles. The framework outperforms traditional lane management strategies, reducing mean waiting time and increasing average speed. This study provides nuanced information on different vehicle penetration rates, enabling more informed decisions on when to install priority lanes. This highlights the importance of considering mixed traffic environments in designing autonomous vehicle infrastructure and sets the stage for future advancements in urban traffic management.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] MACS: Multi-agent Adversarial Reinforcement Learning for Finding Diverse Critical Driving Scenarios
    Kang, Shuting
    Dong, Qian
    Xue, Yunzhi
    Wu, Yanjun
    2024 IEEE CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION, ICST 2024, 2024, : 1 - 12
  • [42] HGAT and Multi-Agent RL-Based Method for Multi-Intersection Traffic Signal Control
    Zhai, Ziyang
    Hao, Ruru
    Cui, Boyang
    Wang, Siyi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025,
  • [43] Multi-Agent Transfer Reinforcement Learning With Multi-View Encoder for Adaptive Traffic Signal Control
    Ge, Hongwei
    Gao, Dongwan
    Sun, Liang
    Hou, Yaqing
    Yu, Chao
    Wang, Yuxin
    Tan, Guozhen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 12572 - 12587
  • [44] Swarm Reinforcement Learning for traffic signal control based on cooperative multi-agent framework
    Tahifa, Mohammed
    Boumhidi, Jaouad
    Yahyaouy, Ali
    2015 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2015,
  • [45] Deep Multi-Agent Reinforcement Learning for Highway On-Ramp Merging in Mixed Traffic
    Chen, Dong
    Hajidavalloo, Mohammad R.
    Li, Zhaojian
    Chen, Kaian
    Wang, Yongqiang
    Jiang, Longsheng
    Wang, Yue
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (11) : 11623 - 11638
  • [46] Extensible Hierarchical Multi-Agent Reinforcement-Learning Algorithm in Traffic Signal Control
    Zhao, Pengqian
    Yuan, Yuyu
    Guo, Ting
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [47] Multiple intersections traffic signal control based on cooperative multi-agent reinforcement learning
    Liu, Junxiu
    Qin, Sheng
    Su, Min
    Luo, Yuling
    Wang, Yanhu
    Yang, Su
    INFORMATION SCIENCES, 2023, 647
  • [48] Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control
    Chu, Tianshu
    Wang, Jie
    Codeca, Lara
    Li, Zhaojian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) : 1086 - 1095
  • [49] Review and Evaluation of Multi-Agent Control Applications for Energy Management in Buildings
    Michailidis, Panagiotis
    Michailidis, Iakovos
    Kosmatopoulos, Elias
    ENERGIES, 2024, 17 (19)
  • [50] An Approach to Multi-Agent Pursuit Evasion Games Using Reinforcement Learning
    Bilgin, Ahmet Tunc
    Kadioglu-Urtis, Esra
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2015, : 164 - 169