Generalized zero-shot learning via discriminative and transferable disentangled representations

被引:0
作者
Zhang, Chunyu
Li, Zhanshan [1 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized zero-shot learning; Generative method; Image classification; NETWORK;
D O I
10.1016/j.neunet.2024.106964
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In generalized zero-shot learning (GZSL), it is required to identify seen and unseen samples under the condition that only seen classes can be obtained during training. Recent methods utilize disentanglement to make the information contained in visual features semantically related, and ensuring semantic consistency and independence of the disentangled representations is the key to achieving better performance. However, we think there are still some limitations. Firstly, due to the fact that only seen classes can be obtained during training, the recognition of unseen samples will be poor. Secondly, the distribution relations of the representation space and the semantic space are different, and ignoring the discrepancy between them may impact the generalization of the model. In addition, the instances are associated with each other, and considering the interactions between them can obtain more discriminative information, which should not be ignored. Thirdly, since the synthesized visual features may not match the corresponding semantic descriptions well, it will compromise the learning of semantic consistency. To overcome these challenges, we propose to learn discriminative and transferable disentangled representations (DTDR) for generalized zero- shot learning. Firstly, we exploit the estimated class similarities to supervise the relations between seen semantic-matched representations and unseen semantic descriptions, thereby gaining better insight into the unseen domain. Secondly, we use cosine similarities between semantic descriptions to constrain the similarities between semantic-matched representations, thereby facilitating the distribution relation of semantic-matched representation space to approximate the distribution relation of semantic space. And during the process, the instance-level correlation can be taken into account. Thirdly, we reconstruct the synthesized visual features into the corresponding semantic descriptions to better establish the associations between them. The experimental results on four datasets verify the effectiveness of our method.
引用
收藏
页数:9
相关论文
共 59 条
  • [1] Label-Embedding for Image Classification
    Akata, Zeynep
    Perronnin, Florent
    Harchaoui, Zaid
    Schmid, Cordelia
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (07) : 1425 - 1438
  • [2] An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild
    Chao, Wei-Lun
    Changpinyo, Soravit
    Gong, Boqing
    Sha, Fei
    [J]. COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 : 52 - 68
  • [3] FREE: Feature Refinement for Generalized Zero-Shot Learning
    Chen, Shiming
    Wang, Wenjie
    Xia, Beihao
    Peng, Qinmu
    You, Xinge
    Zheng, Feng
    Shao, Ling
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 122 - 131
  • [4] Semantics Disentangling for Generalized Zero-Shot Learning
    Chen, Zhi
    Luo, Yadan
    Qiu, Ruihong
    Wang, Sen
    Huang, Zi
    Li, Jingjing
    Zhang, Zheng
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8692 - 8700
  • [5] Entropy-Based Uncertainty Calibration for Generalized Zero-Shot Learning
    Chen, Zhi
    Huang, Zi
    Li, Jingjing
    Zhang, Zheng
    [J]. DATABASES THEORY AND APPLICATIONS (ADC 2021), 2021, 12610 : 139 - 151
  • [6] Fine-Grained Generalized Zero-Shot Learning via Dense Attribute-Based Attention
    Dat Huynh
    Elhamifar, Ehsan
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4482 - 4492
  • [7] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [8] Farhadi A, 2009, PROC CVPR IEEE, P1778, DOI 10.1109/CVPRW.2009.5206772
  • [9] Multi-modal Cycle-Consistent Generalized Zero-Shot Learning
    Felix, Rafael
    Kumar, B. G. Vijay
    Reid, Ian
    Carneiro, Gustavo
    [J]. COMPUTER VISION - ECCV 2018, PT VI, 2018, 11210 : 21 - 37
  • [10] Improving generalized zero-shot learning via cluster-based semantic disentangling representation
    Gao, Yi
    Feng, Wentao
    Xiao, Rong
    He, Lihuo
    He, Zhenan
    Lv, Jiancheng
    Tang, Chenwei
    [J]. PATTERN RECOGNITION, 2024, 150