Implementation of Hybrid Deep Reinforcement Learning Technique for Speech Signal Classification

被引:0
|
作者
Gayathri R. [1 ]
Rani K.S.S. [2 ]
机构
[1] Department of Electronics and Communication Engineering, Sri Ramakrishna Institute of Technology, Coimbatore
[2] Department of Electrical and Electronics Engineering, Sri Ramakrishna Institute of Technology, Coimbatore
来源
关键词
cepstral coefficient; Neural network (NN); reinforcement learning (RL); speech signal classification;
D O I
10.32604/csse.2023.032491
中图分类号
学科分类号
摘要
Classification of speech signals is a vital part of speech signal processing systems. With the advent of speech coding and synthesis, the classification of the speech signal is made accurate and faster. Conventional methods are considered inaccurate due to the uncertainty and diversity of speech signals in the case of real speech signal classification. In this paper, we use efficient speech signal classification using a series of neural network classifiers with reinforcement learning operations. Prior classification of speech signals, the study extracts the essential features from the speech signal using Cepstral Analysis. The features are extracted by converting the speech waveform to a parametric representation to obtain a relatively minimized data rate. Hence to improve the precision of classification, Generative Adversarial Networks are used and it tends to classify the speech signal after the extraction of features from the speech signal using the cepstral coefficient. The classifiers are trained with these features initially and the best classifier is chosen to perform the task of classification on new datasets. The validation of testing sets is evaluated using RL that provides feedback to Classifiers. Finally, at the user interface, the signals are played by decoding the signal after being retrieved from the classifier back based on the input query. The results are evaluated in the form of accuracy, recall, precision, f-measure, and error rate, where generative adversarial network attains an increased accuracy rate than other methods: Multi-Layer Perceptron, Recurrent Neural Networks, Deep belief Networks, and Convolutional Neural Networks. © 2023 CRL Publishing. All rights reserved.
引用
收藏
页码:43 / 56
页数:13
相关论文
共 50 条
  • [41] Parallel Implementation of Reinforcement Learning Q-Learning Technique for FPGA
    Da Silva, Lucileide M. D.
    Torquato, Matheus F.
    Fernandes, Marcelo A. C.
    IEEE ACCESS, 2019, 7 : 2782 - 2798
  • [42] Hybrid Transfer in Deep Reinforcement Learning for Ads Allocation
    Wang, Ze
    Liao, Guogang
    Shi, Xiaowen
    Wu, Xiaoxu
    Zhang, Chuheng
    Zhu, Bingqi
    Wang, Yongkang
    Wang, Xingxing
    Wang, Dong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4560 - 4564
  • [43] A Hybrid Deep Reinforcement Learning Algorithm for Intelligent Manipulation
    Ma, Chao
    Li, Jianfei
    Bai, Jie
    Wang, Yaobing
    Liu, Bin
    Sun, Jing
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT IV, 2019, 11743 : 367 - 377
  • [44] Deep Learning for Acoustic Irony Classification in Spontaneous Speech
    Gent, Helen
    Adams, Chase
    Shih, Chilin
    Tang, Yan
    INTERSPEECH 2022, 2022, : 3993 - 3997
  • [45] Imagined Speech Classification Using EEG and Deep Learning
    Abdulghani, Mokhles M.
    Walters, Wilbur L.
    Abed, Khalid H.
    BIOENGINEERING-BASEL, 2023, 10 (06):
  • [46] Deep4SNet: deep learning for fake speech classification
    Ballesteros, M. Dora
    Rodriguez-Ortega, Yohanna
    Renza, Diego
    Arce, Gonzalo
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184
  • [47] Modulation classification using deep learning technique
    Naeem, Ensherah A.
    Mohamed, Eslam S.
    Mostafa, Sami A.
    JOURNAL OF OPTICS-INDIA, 2024,
  • [48] A Hybrid Deep Learning Model for Text Classification
    Chen, Xianglong
    Ouyang, Chunping
    Liu, Yongbin
    Luo, Lingyun
    Yang, Xiaohua
    2018 14TH INTERNATIONAL CONFERENCE ON SEMANTICS, KNOWLEDGE AND GRIDS (SKG), 2018, : 46 - 52
  • [49] Optimization of Deep Reinforcement Learning with Hybrid Multi-Task Learning
    Varghese, Nelson Vithayathil
    Mahmoud, Qusay H.
    2021 15TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON 2021), 2021,
  • [50] Deep Reinforcement Learning with Sarsa and Q-Learning: A Hybrid Approach
    Xu, Zhi-xiong
    Cao, Lei
    Chen, Xi-liang
    Li, Chen-xi
    Zhang, Yong-liang
    Lai, Jun
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (09) : 2315 - 2322