Bounds for eccentricity-based parameters of graphs

被引:0
|
作者
Tang, Yunfang [1 ]
Qi, Xuli [2 ]
West, Douglas B. [3 ,4 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou, Peoples R China
[2] Hebei Univ Sci & Technol, Dept Math, Shijiazhuang, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua, Peoples R China
[4] Univ Illinois, Dept Math, Urbana, IL USA
基金
中国国家自然科学基金;
关键词
Average eccentricity; Zagreb eccentricity index; Diameter; Chromatic number; Clique number; Matching number; AVERAGE ECCENTRICITY; EXTREMAL PROPERTIES; MOLECULAR-ORBITALS; INDEXES;
D O I
10.1016/j.dam.2024.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity of a vertex u in a graph G, denoted by epsilon G(u), is the maximum distance from u to other vertices in G. We study extremal problems for the average eccentricity and the first and second Zagreb eccentricity indices, denoted by sigma 0(G), sigma 1(G), and sigma 2(G), respectively. These are defined by sigma 0(G) = 1 u is an element of V(G) epsilon G(u), sigma 1(G) = & sum; and sigma 2(G) = & sum; |V (G)| u is an element of V(G) epsilon 2 G(u),uv is an element of E(G) epsilon G(u)epsilon G(v). We study lower and upper bounds on these parameters among n-vertex connected graphs with fixed diameter, chromatic number, clique number, or matching number. Most of the bounds are sharp, with the corresponding extremal graphs characterized. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 50 条
  • [41] Average eccentricity, minimum degree and maximum degree in graphs
    Dankelmann, P.
    Osaye, F. J.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (03) : 697 - 712
  • [42] Extremal graphs of given parameters with respect to the eccentricity distance sum and the eccentric connectivity index
    Zhang, Huihui
    Li, Shuchao
    Xu, Baogen
    DISCRETE APPLIED MATHEMATICS, 2019, 254 : 204 - 221
  • [43] More bounds for the Grundy number of graphs
    Tang, Zixing
    Wu, Baoyindureng
    Hu, Lin
    Zaker, Manoucheher
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (02) : 580 - 589
  • [44] More bounds for the Grundy number of graphs
    Zixing Tang
    Baoyindureng Wu
    Lin Hu
    Manoucheher Zaker
    Journal of Combinatorial Optimization, 2017, 33 : 580 - 589
  • [45] The Average Eccentricity of Block Graphs: A Block Order Sequence Perspective
    Li, Xingfu
    Yu, Guihai
    Das, Kinkar Chandra
    AXIOMS, 2022, 11 (03)
  • [46] Characterizing the extremal graphs with respect to the eccentricity spectral radius, and beyond
    Wei, Wei
    Li, Shuchao
    Zhang, Licheng
    DISCRETE MATHEMATICS, 2022, 345 (02)
  • [47] The Average Eccentricity, Spanning Trees of Plane Graphs, Size and Order
    Ali, Patrick
    Dankelmann, Peter
    Morgan, Megan J.
    Mukwembi, Simon
    Swart, Henda
    Vetrik, Tomas
    UTILITAS MATHEMATICA, 2018, 107 : 37 - 49
  • [48] Edge-grafting transformations on the average eccentricity of graphs and their applications
    He, Chunling
    Li, Shuchao
    Tu, Jianwei
    DISCRETE APPLIED MATHEMATICS, 2018, 238 : 95 - 105
  • [49] Bounds for the First Zagreb Eccentricity Index and First Zagreb Degree Eccentricity Index
    Padmapriya, P.
    Mathad, Veena
    KYUNGPOOK MATHEMATICAL JOURNAL, 2018, 58 (02): : 221 - 229
  • [50] Zagreb eccentricity indices of unicyclic graphs
    Qi, Xuli
    Zhou, Bo
    Li, Jiyong
    DISCRETE APPLIED MATHEMATICS, 2017, 233 : 166 - 174