Bounds for eccentricity-based parameters of graphs

被引:0
|
作者
Tang, Yunfang [1 ]
Qi, Xuli [2 ]
West, Douglas B. [3 ,4 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou, Peoples R China
[2] Hebei Univ Sci & Technol, Dept Math, Shijiazhuang, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua, Peoples R China
[4] Univ Illinois, Dept Math, Urbana, IL USA
基金
中国国家自然科学基金;
关键词
Average eccentricity; Zagreb eccentricity index; Diameter; Chromatic number; Clique number; Matching number; AVERAGE ECCENTRICITY; EXTREMAL PROPERTIES; MOLECULAR-ORBITALS; INDEXES;
D O I
10.1016/j.dam.2024.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity of a vertex u in a graph G, denoted by epsilon G(u), is the maximum distance from u to other vertices in G. We study extremal problems for the average eccentricity and the first and second Zagreb eccentricity indices, denoted by sigma 0(G), sigma 1(G), and sigma 2(G), respectively. These are defined by sigma 0(G) = 1 u is an element of V(G) epsilon G(u), sigma 1(G) = & sum; and sigma 2(G) = & sum; |V (G)| u is an element of V(G) epsilon 2 G(u),uv is an element of E(G) epsilon G(u)epsilon G(v). We study lower and upper bounds on these parameters among n-vertex connected graphs with fixed diameter, chromatic number, clique number, or matching number. Most of the bounds are sharp, with the corresponding extremal graphs characterized. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 50 条
  • [21] On the Upper Bounds of the Numbers of Perfect Matchings in Graphs with Given Parameters
    Hong Lin
    Xiao-feng Guo
    Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 : 155 - 160
  • [22] On the upper bounds of the numbers of perfect matchings in graphs with given parameters
    Lin, Hong
    Guo, Xiao-feng
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (01): : 155 - 160
  • [23] Upper bounds on the average eccentricity of K3-free and C4-free graphs
    Dankelmann, P.
    Osaye, F. J.
    Mukwembi, S.
    Rodrigues, B. G.
    DISCRETE APPLIED MATHEMATICS, 2019, 270 : 106 - 114
  • [24] Eccentricity-Based Topological Invariants of Dominating David-Derived Networks
    Imran, Muhammad
    Zobair, Mian Muhammad
    Shaker, Hani
    JOURNAL OF CHEMISTRY, 2021, 2021
  • [25] On the harmonic index and the average eccentricity of graphs
    Zhong, Lingping
    Cui, Qing
    UTILITAS MATHEMATICA, 2017, 103 : 311 - 318
  • [26] RETRACTED: Eccentricity-Based Topological Descriptors of First Type of Hex-Derived Network (Retracted Article)
    Babar, Usman
    Naseem, Asim
    Shaker, Hani
    Zobair, Mian Muhammad
    Ali, Haidar
    JOURNAL OF CHEMISTRY, 2022, 2022
  • [27] Extremal trees of given segment sequence with respect to some eccentricity-based invariants
    Zhang, Minjie
    Wang, Chengyong
    Li, Shuchao
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 111 - 123
  • [28] The Average Eccentricity of Sierpinski Graphs
    Hinz, Andreas M.
    Parisse, Daniele
    GRAPHS AND COMBINATORICS, 2012, 28 (05) : 671 - 686
  • [29] On Connective Eccentricity Index of Graphs
    Yu, Guihai
    Feng, Lihua
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 69 (03) : 611 - 628
  • [30] On graphs with maximum average eccentricity
    Horoldagva, Batmend
    Buyantogtokh, Lkhagva
    Dorjsembe, Shiikhar
    Azjargal, Enkhbayar
    Adiyanyam, Damchaa
    DISCRETE APPLIED MATHEMATICS, 2021, 301 (301) : 109 - 117