Bounds for eccentricity-based parameters of graphs

被引:0
作者
Tang, Yunfang [1 ]
Qi, Xuli [2 ]
West, Douglas B. [3 ,4 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou, Peoples R China
[2] Hebei Univ Sci & Technol, Dept Math, Shijiazhuang, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua, Peoples R China
[4] Univ Illinois, Dept Math, Urbana, IL USA
基金
中国国家自然科学基金;
关键词
Average eccentricity; Zagreb eccentricity index; Diameter; Chromatic number; Clique number; Matching number; AVERAGE ECCENTRICITY; EXTREMAL PROPERTIES; MOLECULAR-ORBITALS; INDEXES;
D O I
10.1016/j.dam.2024.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity of a vertex u in a graph G, denoted by epsilon G(u), is the maximum distance from u to other vertices in G. We study extremal problems for the average eccentricity and the first and second Zagreb eccentricity indices, denoted by sigma 0(G), sigma 1(G), and sigma 2(G), respectively. These are defined by sigma 0(G) = 1 u is an element of V(G) epsilon G(u), sigma 1(G) = & sum; and sigma 2(G) = & sum; |V (G)| u is an element of V(G) epsilon 2 G(u),uv is an element of E(G) epsilon G(u)epsilon G(v). We study lower and upper bounds on these parameters among n-vertex connected graphs with fixed diameter, chromatic number, clique number, or matching number. Most of the bounds are sharp, with the corresponding extremal graphs characterized. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 34 条
[1]  
Buckley F., 1990, DISTANCE GRAPHS
[2]   Average eccentricity, minimum degree and maximum degree in graphs [J].
Dankelmann, P. ;
Osaye, F. J. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (03) :697-712
[3]   Upper bounds on the average eccentricity of K3-free and C4-free graphs [J].
Dankelmann, P. ;
Osaye, F. J. ;
Mukwembi, S. ;
Rodrigues, B. G. .
DISCRETE APPLIED MATHEMATICS, 2019, 270 :106-114
[4]  
Dankelmann P, 2004, UTILITAS MATHEMATICA, V65, P41
[5]   Upper bounds on the average eccentricity [J].
Dankelmann, Peter ;
Mukwembi, Simon .
DISCRETE APPLIED MATHEMATICS, 2014, 167 :72-79
[6]   On Average Eccentricity of Graphs [J].
Das, Kinkar Ch. ;
Maden, A. Dilek ;
Cangul, I. Naci ;
Cevik, A. Sinan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2017, 87 (01) :23-30
[7]  
Das KC, 2013, ARS MATH CONTEMP, V6, P117
[8]  
Du ZB, 2013, MATCH-COMMUN MATH CO, V69, P597
[9]   Extremal Properties of the Zagreb Eccentricity Indices [J].
Du, Zhibin ;
Zhou, Bo ;
Trinajstic, Nenad .
CROATICA CHEMICA ACTA, 2012, 85 (03) :359-362
[10]  
ERSHOV AP, 1962, DOKL AKAD NAUK SSSR+, V142, P270