Using Deep Learning for Rapid Earthquake Parameter Estimation in Single-Station Single-Component Earthquake Early Warning System

被引:2
作者
Abdalzaher, Mohamed S. [1 ]
Sami Soliman, M. Sami [1 ]
Fouda, Mostafa M. [2 ]
机构
[1] Natl Res Inst Astron & Geophys NRIAG, Cairo 11421, Egypt
[2] Idaho State Univ, Coll Sci & Engn, Dept Elect & Comp Engn, Pocatello, ID 83209 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Earthquakes; Long short term memory; Training; Sensors; Recording; Parameter estimation; Deep learning; Maximum likelihood estimation; Data models; Geoscience and remote sensing; Earthquake early warning; machine learning (ML); P-wave; seismic parameters; 3-COMPONENT BROAD-BAND; WAVE-FORMS; PREDICTION; MAGNITUDE; NETWORKS;
D O I
10.1109/TGRS.2024.3492023
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Earthquake early warning systems (EEWSs) often rely on fast determination of earthquake source parameters, namely, location, magnitude, and depth. In areas where the seismic network is coarse, the capability to determine source parameters based on data recorded by a single station is desirable. Moreover, being able to use a single component of the seismic data might increase the robustness of the system to sensor malfunction and might save on sensor cost and computation time. Here, we propose a hybrid deep learning (DL) model to estimate source parameters based on single-component data recorded by a single station at 3 s after the P-wave onset. The model, which we call EEWS-311, uses a convolutional neural network (CNN) and bidirectional long short-term memory. It is trained and tested on recordings of more than 14000 events by a single station of the Japanese Hi-net high-sensitivity short-period seismic network. Compared with source parameters obtained by conventional methods, our model achieves excellent performance (average errors in latitude, longitude, magnitude, and depth equal to 0.05 degrees, 0.1 degrees, 0.14 velocity magnitude (Mv), and 5.68 km, respectively). The results demonstrate the suitability of EEWS-311 for earthquake early warning in areas with sufficient training data.
引用
收藏
页数:10
相关论文
共 69 条
[1]   Enhancing analyst decisions for seismic source discrimination with an optimized learning model [J].
Abdalzaher, Mohamed S. ;
Moustafa, Sayed S. R. ;
Farid, W. ;
Salim, Mahmoud M. .
GEOENVIRONMENTAL DISASTERS, 2024, 11 (01)
[2]   Enhancing earthquakes and quarry blasts discrimination using machine learning based on three seismic parameters [J].
Abdalzaher, Mohamed S. ;
Krichen, Moez ;
Fouda, Mostafa M. .
AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (09)
[3]   Emerging technologies and supporting tools for earthquake disaster management: A perspective, challenges, and future directions [J].
Abdalzaher, Mohamed S. ;
Krichen, Moez ;
Falcone, Francisco .
PROGRESS IN DISASTER SCIENCE, 2024, 23
[4]   Employing Machine Learning for Seismic Intensity Estimation Using a Single Station for Earthquake Early Warning [J].
Abdalzaher, Mohamed S. ;
Soliman, M. Sami ;
Krichen, Moez ;
Alamro, Meznah A. ;
Fouda, Mostafa M. .
REMOTE SENSING, 2024, 16 (12)
[5]   Development of smoothed seismicity models for seismic hazard assessment in the Red Sea region [J].
Abdalzaher, Mohamed S. ;
Moustafa, Sayed S. R. ;
Yassien, Mohamed .
NATURAL HAZARDS, 2024, 120 (13) :12515-12544
[6]   Seismic Intensity Estimation for Earthquake Early Warning Using Optimized Machine Learning Model [J].
Abdalzaher, Mohamed S. ;
Soliman, M. Sami ;
El-Hady, Sherif M. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[7]   Early Detection of Earthquakes Using IoT and Cloud Infrastructure: A Survey [J].
Abdalzaher, Mohamed S. ;
Krichen, Moez ;
Yiltas-Kaplan, Derya ;
Ben Dhaou, Imed ;
Adoni, Wilfried Yves Hamilton .
SUSTAINABILITY, 2023, 15 (15)
[8]   Employing Remote Sensing, Data Communication Networks, AI, and Optimization Methodologies in Seismology [J].
Abdalzaher, Mohamed S. ;
Elsayed, Hussein A. ;
Fouda, Mostafa M. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :9417-9438
[9]   An Optimized Learning Model Augment Analyst Decisions for Seismic Source Discrimination [J].
Abdalzaher, Mohamed S. ;
Moustafa, Sayed S. R. ;
Hafiez, H. E. Abdel ;
Ahmed, Walid Farid .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[10]   A Deep Learning Model for Earthquake Parameters Observation in IoT System-Based Earthquake Early Warning [J].
Abdalzaher, Mohamed S. ;
Soliman, M. Sami ;
El-Hady, Sherif M. ;
Benslimane, Abderrahim ;
Elwekeil, Mohamed .
IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (11) :8412-8424