In this paper, a study of the denitrification strain Cupriavidus sp. W12 was conducted to remove copper (Cu2+), carbamazepine (CBZ), and calcium (Ca2+) by microbial-induced calcium precipitation (MICP) after adding fulvic acid (FA). After the addition of 20 mg/L FA, the removal efficiencies of nitrate (NO3--N), Cu2+, CBZ, and Ca2+ reached 100.0 %, 98.7 %, 96.6 %, and 73.6 %, correspondingly and there was no accumulation of nitrite (NO2-N). FA stimulated the growth of strain W12, improved electron transfer activity, and facilitated the conversion of gaseous nitrogen. The research revealed that FA might enhance microbial activity and result in a more dense and porous structure of the biological precipitate. Cu2+ and CBZ were removed by co-precipitation and adsorption. As the initial report of FA promoting MICP to remove complex pollutants, this paper offers a theoretical foundation for NO3--N, Cu2+, CBZ, and Ca2+ remediation in micropolluted water.