High resolution CO2 emissions inventory and investigation of driving factors for China using an advanced dynamic estimation model

被引:1
作者
Hou, Xiaosong [1 ]
Wang, Xiaoqi [1 ]
Cheng, Shuiyuan [1 ]
Wang, Chuanda [1 ]
Wang, Wei [1 ]
机构
[1] Beijing Univ Technol, Fac Environm Sci & Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
关键词
CO; 2; emissions; Emission inventory; Industrial heat sources; Nighttime light; Dynamic spatiotemporal variation; CARBON EMISSIONS; ATMOSPHERIC CO2; ACCOUNTS; PRODUCT; TIME;
D O I
10.1016/j.resconrec.2024.108109
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Developing a high-resolution CO2 emissions inventory for China is challenging because of limited detailed parameter information in bottom-up approaches. This study integrated socioeconomic attributes, point emission data, industrial heat sources, and improved night-time light data to develop an advanced top-down dynamic CO2 emissions estimation model. Using this model, a 0.01 degrees resolution CO2 emissions inventory for China from 2012 to 2022 was created. The results demonstrated that the model enhances spatial precision, distribution accuracy, and timeliness. Spatiotemporal dynamics help identify high emission periods and regions, and reflect the impact of geographical and social activities. The driver factor analysis indicated that GDP per capita, energy intensity, and carbon emissions intensity were the main drivers of changes in emissions. Each region should develop emissionreduction strategies based on the dynamic variations of these drivers. This study offers a reliable tool for carbon emissions inventory research, supporting accurate carbon emissions estimation and policy formulation.
引用
收藏
页数:13
相关论文
共 73 条
[1]   Emission characteristics and inventory of volatile organic compounds from the Chinese cement industry based on field measurements* [J].
Bai, Xiaoxuan ;
Liu, Wei ;
Wu, Bobo ;
Liu, Shuhan ;
Liu, Xiangyang ;
Hao, Yan ;
Liang, Weizhao ;
Lin, Shumin ;
Luo, Lining ;
Zhao, Shuang ;
Zhu, Chuanyong ;
Hao, Jiming ;
Tian, Hezhong .
ENVIRONMENTAL POLLUTION, 2023, 316
[2]   A framework for localizing global climate solutions and their carbon reduction potential [J].
Brown, Marilyn A. ;
Dwivedi, Puneet ;
Mani, Sudhagar ;
Matisoff, Daniel ;
Mohan, Jacqueline E. ;
Mullen, Jeffrey ;
Oxman, Michael ;
Rodgers, Michael ;
Simmons, Richard ;
Beasley, Blair ;
Polepeddi, Lalith .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (31)
[3]   China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data [J].
Cai, Bofeng ;
Liang, Sai ;
Zhou, Jiong ;
Wang, Jinnan ;
Cao, Libin ;
Qu, Shen ;
Xu, Ming ;
Yang, Zhifeng .
RESOURCES CONSERVATION AND RECYCLING, 2018, 129 :232-239
[4]   Industrial structure, technical progress and carbon intensity in China's provinces [J].
Cheng, Zhonghua ;
Li, Lianshui ;
Liu, Jun .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 81 :2935-2946
[5]   The spatial-temporal dynamics of daily intercity mobility in the Yangtze River Delta: An analysis using big data [J].
Cui, Can ;
Wu, Xiaoli ;
Liu, Liu ;
Zhang, Weiyang .
HABITAT INTERNATIONAL, 2020, 106
[6]   CO2 emissions and their spatial patterns of Xinjiang cities in China [J].
Cui, Can ;
Shan, Yuli ;
Liu, Jianghua ;
Yu, Xiang ;
Wang, Hongtao ;
Wang, Zhen .
APPLIED ENERGY, 2019, 252
[7]  
Doll CNH, 2000, AMBIO, V29, P157, DOI 10.1639/0044-7447(2000)029[0157:NTIAAT]2.0.CO
[8]  
2
[9]   Near-real-time global gridded daily CO2 emissions 2021 [J].
Dou, Xinyu ;
Hong, Jinpyo ;
Ciais, Philippe ;
Chevallier, Frederic ;
Yan, Feifan ;
Yu, Ying ;
Hu, Yifan ;
Huo, Da ;
Sun, Yun ;
Wang, Yilong ;
Davis, Steven. J. J. ;
Crippa, Monica ;
Janssens-Maenhout, Greet ;
Guizzardi, Diego ;
Solazzo, Efisio ;
Lin, Xiaojuan ;
Song, Xuanren ;
Zhu, Biqing ;
Cui, Duo ;
Ke, Piyu ;
Wang, Hengqi ;
Zhou, Wenwen ;
Huang, Xia ;
Deng, Zhu ;
Liu, Zhu .
SCIENTIFIC DATA, 2023, 10 (01)
[10]  
[段文娇 Duan Wenjiao], 2019, [中国环境科学, China Environmental Science], V39, P4108