Deep learning models for vision-based occupancy detection in high occupancy buildings

被引:0
|
作者
Zhang, Wuxia [1 ]
Calautit, John [1 ]
Tien, Paige Wenbin [1 ]
Wu, Yupeng [1 ]
Wei, Shuangyu [2 ]
机构
[1] Univ Nottingham, Dept Architecture & Built Environm, Nottingham NG7 2RD, England
[2] Cardiff Univ, Welsh Sch Architecture, Cardiff CF10 3NB, Wales
来源
关键词
Deep learning; Computer vision; Energy efficiency; Building energy simulation; Occupancy detection; You Only Look Once (YOLO); Faster Region-based Convolutional Neural; Networks (Faster R-CNN); Single Shot MultiBox Detector (SSD); OFFICE;
D O I
10.1016/j.jobe.2024.111355
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate occupancy information is crucial for enhancing energy efficiency and reducing carbon emissions in buildings. However, the inherent unpredictability of occupants introduces uncertainties in energy analysis and control strategy development. To address these challenges, this study proposes a vision-based method employing state-of-the-art deep learning models to capture real-time occupancy profiles in crowded indoor spaces. Utilising a self-collected image dataset, various deep learning models, including Single Shot MultiBox Detector (SSD), Faster Regionbased Convolutional Neural Networks (Faster R-CNN), and different versions of You Only Look Once (YOLO) were trained and evaluated. An experiment was conducted in a lecture room equipped with cameras and environmental sensors to evaluate the performance of each model in terms of precision, computational efficiency, and adaptability to varying occupancy levels during a lecture session. The session included varying occupancy conditions: entering (barely occupied), during the lecture (typical occupancy), and leaving the room (again barely occupied). Among the models tested, YOLOv8x exhibited the best performance in terms of accuracy, while SSD lagged notably. The impact on the detection performance of various locations of camera setups was also explored. Energy simulations revealed that deep learning-based model generated occupancy profiles significantly deviated from conventional "fixed" occupancy profiles, resulting in a 13.45 % variation in predicted heating energy demand. However, compared to the ground truth, these profiles showed minimal variation (up to 6.72 %) for the Faster R-CNN and YOLO models, highlighting their accuracy and robustness. Additionally, although the deep learning-based occupancy profiles generally overpredicted the recorded data, the CO2 concentration trends they predicted aligned closely with the recorded data, unlike the "fixed" occupancy profiles. The findings underscore the importance of realistic occupancy profiles for reliable energy predictions in buildings and demonstrate the potential of the proposed vision-based method for advancing occupancy detection and building energy management.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Comparing occupancy models and data mining approaches for regular occupancy prediction in commercial buildings
    Chen, Zhenghua
    Soh, Yeng Chai
    JOURNAL OF BUILDING PERFORMANCE SIMULATION, 2017, 10 (5-6) : 545 - 553
  • [32] Vision-based detection and prediction of equipment heat gains in commercial office buildings using a deep learning method
    Wei, Shuangyu
    Tien, Paige Wenbin
    Calautit, John Kaiser
    Wu, Yupeng
    Boukhanouf, Rabah
    APPLIED ENERGY, 2020, 277
  • [33] Low Latency Deep Learning Based Parking Occupancy Detection By Exploiting Structural Similarity
    Ng, Chin-Kit
    Cheong, Soon-Nyean
    Foo, Yee-Loo
    COMPUTATIONAL SCIENCE AND TECHNOLOGY (ICCST 2019), 2020, 603 : 247 - 256
  • [34] DeepClass: Edge Based Class Occupancy Detection Aided by Deep Learning and Image Cropping
    Tse, Rita
    Monti, Lorenzo
    Im, Marcus
    Mirri, Silvia
    Pau, Giovanni
    Salomoni, Paola
    TWELFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2020), 2020, 11519
  • [35] Deep Learning for Accurate Corner Detection in Computer Vision-Based Inspection
    Ercan, M. Fikret
    Ben Wang, Ricky
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT II, 2021, 12950 : 45 - 54
  • [36] Synthesizing the performance of deep learning in vision-based pavement distress detection
    Zihan, Zia U. A.
    Smadi, Omar
    Tilberg, Miranda
    Yamany, Mohamed S.
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2023, 8 (11)
  • [37] Vision-based Analytics of Flare Stacks Using Deep Learning Detection
    Al Radi, Muaz
    Boumaraf, Said
    Karki, Hamad
    Dias, Jorge
    Werghi, Naoufel
    Javed, Sajid
    2023 21ST INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS, ICAR, 2023, : 467 - 472
  • [38] Vision-based Deep Learning algorithm for Underwater Object Detection and Tracking
    Alla, Durga Nooka Venkatesh
    Jyothi, V. Bala Naga
    Venkataraman, H.
    Ramadass, G. A.
    OCEANS 2022, 2022,
  • [39] Anomaly detection with vision-based deep learning for epidemic prevention and control
    Samani, Hooman
    Yang, Chan-Yun
    Li, Chunxu
    Chung, Chia-Ling
    Li, Shaoxiang
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2022, 9 (01) : 187 - 200
  • [40] Deep Learning Architecture for Computer Vision-based Structural Defect Detection
    Ruoyu Yang
    Shubhendu Kumar Singh
    Mostafa Tavakkoli
    M. Amin Karami
    Rahul Rai
    Applied Intelligence, 2023, 53 : 22850 - 22862