Iodine- and nitrogen-CO-doped carbon flower materials for the anode electrode of lithium-ion batteries

被引:0
作者
Li, Ying [1 ]
Zhao, Yaxin [1 ]
Liu, Ruifeng [1 ]
Zhang, Luyao [1 ]
Zhang, Junzhe [1 ]
Hu, Xinlong [1 ]
Lei, Fang [1 ]
Wang, Huiqi [1 ]
机构
[1] North Univ China, Sch Mat Sci & Engn & Energy & Power Engn, Lab Coal based Carbon Dots & Carbon Reduced Techno, Res Grp New Energy Mat & Devices, Taiyuan 030051, Peoples R China
基金
中国国家自然科学基金;
关键词
Anode material; carbon; iodine and nitrogen co-doping; flower-like structure; lithium-ion batteries; GRAPHENE; CONDUCTIVITY; PERFORMANCE;
D O I
10.1142/S179360472451038X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As green anode materials with wide distribution, controllable cost, and diversified structure, carbon materials have received more attention. In this paper, iodine- and nitrogen-co-doped carbon flower materials were prepared. The flower-like structure of the material ensures the rapid diffusion of lithium ions, and the synergistic effect of iodine and nitrogen atoms improves the pore size distribution, the conductivity and the active sites of carbon materials realizing the high ion storage and the fast charge diffusion. As the anode material of lithium-ion batteries, the iodine- and nitrogen-co-doped carbon flower could have the capacitance of 410 mAh g(-1) at the current density of 0.1 A g(-1) after 150 cycles and 181 mAh g(-1) at the high current density of 2.0 A g(-1) after 1000 cycles. The results of electrochemical impedance spectroscopy, kinetics, and GITT show this material has fast charge transport kinetics and excellent rate performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Nitrogen-Doped Carbon for Red Phosphorous Based Anode Materials for Lithium Ion Batteries
    Li, Jiaoyang
    Qian, Yumin
    Wang, Li
    He, Xiangming
    MATERIALS, 2018, 11 (01):
  • [12] Flower-like SnO2 nanoparticles grown on graphene as anode materials for lithium-ion batteries
    Guo, Qi
    Qin, Xue
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (04) : 1031 - 1039
  • [13] Nitrogen doped biomass-derived porous carbon as anode materials of lithium ion batteries
    Wan, Hongri
    Hu, Xiaofang
    SOLID STATE IONICS, 2019, 341
  • [14] SiO2/Co encapsulated in N-doped carbon nanofibers as anode materials for lithium-ion batteries
    Zhong, Qi
    Yang, Xiao
    Miao, Zhengrui
    Liu, Liequan
    Xu, Yuqing
    Meng, YiXuan
    Yang, Zhenyu
    Yu, Ji
    MATERIALS TODAY CHEMISTRY, 2024, 35
  • [15] Anode materials for lithium-ion batteries: A review
    Nzereogu, P. U.
    Omah, A. D.
    Ezema, F. I.
    Iwuoha, E. I.
    Nwanya, A. C.
    APPLIED SURFACE SCIENCE ADVANCES, 2022, 9
  • [16] Synthesis and Properties of Nitrogen-Doped Graphene as Anode Materials for Lithium-Ion Batteries
    Fu, Changjing
    Song, Chunlai
    Liu, Lilai
    Xie, Xuedong
    Zhao, Weiling
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (05): : 3876 - 3886
  • [17] Ultrahigh edge-nitrogen-doped porous carbon anode materials for high-capacity and fast-charging lithium-ion batteries
    Xu, Chong
    Ma, Guang
    Yang, Wang
    Wang, Ye
    Jia, Yan
    Sun, Yankun
    Kong, Xiaowei
    Yang, Jiahao
    Liu, Hongchen
    Zhang, Xiaoming
    Huang, Guoyong
    Li, Yongfeng
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [18] Nitrogen-doped 3D flower-like carbon materials derived from polyimide as high-performance anode materials for lithium-ion batteries
    Wu, Qiong
    Liu, Jiaqi
    Yuan, Chenpei
    Li, Qiang
    Wang, Heng-guo
    APPLIED SURFACE SCIENCE, 2017, 425 : 1082 - 1088
  • [19] Carbon coating of electrode materials for lithium-ion batteries
    Yaroslavtsev, Andrey B.
    Stenina, Irina A.
    SURFACE INNOVATIONS, 2021, 9 (2-3) : 92 - 110
  • [20] Silicon/carbon nanocomposites used as anode materials for lithium-ion batteries
    Yingqiong Yong
    Li-Zhen Fan
    Ionics, 2013, 19 : 1545 - 1549