Effect of mooring system stiffness on floating offshore wind turbine loads in a passively self-adjusting floating wind farm

被引:0
作者
Mahfouz, Mohammad Youssef [1 ]
Cheng, Po Wen [1 ]
机构
[1] Univ Stuttgart, Stuttgart Wind Energy, Allmandring 5b, D-70569 Stuttgart, Baden Wurttembe, Germany
关键词
Floating offshore wind; Mooring system design; Self-adjusting wind farm layout; Wake effect; Fatigue analysis; WAKES; OPTIMIZATION; LAYOUT;
D O I
10.1016/j.renene.2024.121823
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Floating offshore wind turbines (FOWTs) offer a way to reduce wake losses in floating wind farms (FWFs) by using less stiff mooring systems (MS) that allow for self-adjusting layouts. These layouts enable turbines to reposition based on wind speed and direction, improving energy production. This study analyzes three self-adjusting FWF layouts with different MS stiffness and compares the resulting FOWT loads to a baseline FWF with a standard MS design. Our results show that reduced MS stiffness increases loads, especially at the tower base, and yaw stiffness must be maintained above a certain threshold. This is especially important in above-rated wind speeds, where increased aerodynamic yaw moments occur. A self-adjusting layout that adheres to yaw stiffness constraints showed a 1.5% increase in annual energy production (AEP) and a 4% reduction in MS costs using dynamic wake models.
引用
收藏
页数:17
相关论文
共 46 条
[1]   Passive Mooring-based Turbine Repositioning Technique for Wake Steering in Floating Offshore Wind Farms [J].
Alkarem, Yuksel R. ;
Huguenard, Kimberly ;
Verma, Amrit S. ;
Van Binsbergen, Diederik ;
Bachynski-Polic, Erin ;
Nejad, Amir R. .
SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2024, 2024, 2767
[2]  
[Anonymous], 2019, IEC 61400-3-1:2019
[3]  
[Anonymous], 2008, API RP 2SK design and analysis of stationkeeping systems for floating structures
[4]  
Baker NF., 2019, AIAA Scitech 2019 Forum, P0540, DOI DOI 10.2514/6.2019-0540
[5]   Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms [J].
Barthelmie, R. J. ;
Pryor, S. C. ;
Frandsen, S. T. ;
Hansen, K. S. ;
Schepers, J. G. ;
Rados, K. ;
Schlez, W. ;
Neubert, A. ;
Jensen, L. E. ;
Neckelmann, S. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (08) :1302-1317
[6]   Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore [J].
Barthelmie, R. J. ;
Hansen, K. ;
Frandsen, S. T. ;
Rathmann, O. ;
Schepers, J. G. ;
Schlez, W. ;
Phillips, J. ;
Rados, K. ;
Zervos, A. ;
Politis, E. S. ;
Chaviaropoulos, P. K. .
WIND ENERGY, 2009, 12 (05) :431-444
[7]   Experimental and theoretical study of wind turbine wakes in yawed conditions [J].
Bastankhah, Majid ;
Porte-Agel, Fernando .
JOURNAL OF FLUID MECHANICS, 2016, 806 :506-541
[8]  
Beiter P., 2016, A Spatial-Economic Cost-Reduction Pathway Analysis for U.S. Offshore Wind Energy Development from 2015 - 2030
[9]   A time-varying formulation of the curled wake model within the FAST.Farm framework [J].
Branlard, Emmanuel ;
Martinez-Tossas, Luis A. ;
Jonkman, Jason .
WIND ENERGY, 2023, 26 (01) :44-63
[10]  
Carmo L., 2024, Farm, Wind Energy Sci., P1, DOI [10.5194/wes-2024-40, DOI 10.5194/WES-2024-40]