Integration of MALDI-TOF MS and machine learning to classify enterococci: A comparative analysis of supervised learning algorithms for species prediction

被引:2
|
作者
Kim, Eiseul [1 ,2 ]
Yang, Seung-Min [1 ,2 ]
Ham, Jun-Hyeok [1 ,2 ]
Lee, Woojung [1 ,2 ]
Jung, Dae-Hyun [3 ]
Kim, Hae-Yeong [1 ,2 ]
机构
[1] Kyung Hee Univ, Inst Life Sci & Resources, Yongin 17104, South Korea
[2] Kyung Hee Univ, Dept Food Sci & Biotechnol, Yongin 17104, South Korea
[3] Kyung Hee Univ, Dept Smart Farm Sci, Yongin 17104, South Korea
基金
新加坡国家研究基金会;
关键词
Enterococcus; Machine learning; MALDI-TOF MS; Classification; Mass peak; IDENTIFICATION;
D O I
10.1016/j.foodchem.2024.140931
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This research focused on distinguishing distinct matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) spectral signatures of three Enterococcus species. We evaluated and compared the predictive performance of four supervised machine learning algorithms, K-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), to accurately classify Enterococcus species. This study involved a comprehensive dataset of 410 strains, generating 1640 individual spectra through on-plate and off-plate protein extraction methods. Although the commercial database correctly identified 76.9% of the strains, machine learning classifiers demonstrated superior performance (accuracy 0.991). In the RF model, top informative peaks played a significant role in the classification. Whole-genome sequencing showed that the most informative peaks are biomarkers connected to proteins, which are essential for understanding bacterial classification and evolution. The integration of MALDI-TOF MS and machine learning provides a rapid and accurate method for identifying Enterococcus species, improving healthcare and food safety.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] MALDI-TOF MS analysis of human and animal Brachyspira species and benefits of database extension
    Calderaro, Adriana
    Piccolo, Giovanna
    Montecchini, Sara
    Buttrini, Mirko
    Gorrini, Chiara
    Rossi, Sabina
    Arcangeletti, Maria Cristina
    De Conto, Flora
    Medici, Maria Cristina
    Chezzi, Carlo
    JOURNAL OF PROTEOMICS, 2013, 78 : 273 - 280
  • [22] Evaluation of the performance of MALDI-TOF MS and DNA sequence analysis in the identification of mycobacteria species
    Akyar, Isin
    Cavusoglu, Cengiz
    Ayas, Meltem
    Surucuoglu, Suheyla
    Ilki, Arzu
    Kaya, Deniz Ece
    Besli, Yesim
    TURKISH JOURNAL OF MEDICAL SCIENCES, 2018, 48 (06) : 1351 - 1357
  • [23] Comparative analysis of storage conditions and homogenization methods for tick and flea species for identification by MALDI-TOF MS
    Nebbak, A.
    El Hamzaoui, B.
    Berenger, J. -M.
    Bitam, I.
    Raoult, D.
    Almeras, L.
    Parola, P.
    MEDICAL AND VETERINARY ENTOMOLOGY, 2017, 31 (04) : 438 - 448
  • [24] Analysis of high-molecular-weight proteins using MALDI-TOF MS and machine learning for the differentiation of clinically relevant Clostridioides difficile ribotypes
    Candela, Ana
    Rodriguez-Temporal, David
    Blazquez-Sanchez, Mario
    Arroyo, Manuel J.
    Marin, Mercedes
    Alcala, Luis
    Bou, German
    Rodriguez-Sanchez, Belen
    Oviano, Marina
    EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2025, 44 (02) : 417 - 425
  • [25] Accurate classification of Listeria species by MALDI-TOF mass spectrometry incorporating denoising autoencoder and machine learning
    Li, Yunhong
    Gan, Zeyu
    Zhou, Xi
    Chen, Zhiwei
    JOURNAL OF MICROBIOLOGICAL METHODS, 2022, 192
  • [26] Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning
    Weis, Caroline
    Cuenod, Aline
    Rieck, Bastian
    Llinares-Lopez, Felipe
    Dubuis, Olivier
    Graf, Susanne
    Lang, Claudia
    Oberle, Michael
    Brackmann, Maximilian
    Sogaard, Kirstine K.
    Osthoff, Michael
    Borgwardt, Karsten
    Egli, Adrian
    NATURE MEDICINE, 2022, 28 (01) : 164 - +
  • [27] Comparative Analysis of Machine Learning Algorithms for Rainfall Prediction
    Patil, Rudragoud
    Bedekar, Gayatri
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, ICIDCA 2021, 2022, 96 : 833 - 842
  • [28] First analysis by MALDI-TOF MS technique of Chryseobacterium species relevant to aquaculture
    Perez-Sancho, M.
    Vela, A. I.
    Kostrzewa, M.
    Zamora, L.
    Casamayor, A.
    Dominguez, L.
    Fernandez-Garayzabal, J. F.
    JOURNAL OF FISH DISEASES, 2018, 41 (02) : 389 - 393
  • [29] Prediction Model for Bollywood Movie Success: A Comparative Analysis of Performance of Supervised Machine Learning Algorithms
    Hemraj Verma
    Garima Verma
    The Review of Socionetwork Strategies, 2020, 14 : 1 - 17
  • [30] Identification of Mycobacterium abscessus Subspecies by MALDI-TOF Mass Spectrometry and Machine Learning
    Rodriguez-Temporal, David
    Herrera, Laura
    Alcaide, Fernando
    Domingo, Diego
    Hery-Arnaud, Genevieve
    van Ingen, Jakko
    Van den Bossche, An
    Ingebretsen, Andre
    Beauruelle, Clemence
    Terschlusen, Eva
    Boarbi, Samira
    Vila, Neus
    Arroyo, Manuel J.
    Mendez, Gema
    Munoz, Patricia
    Mancera, Luis
    Ruiz-Serrano, Maria Jesus
    Rodriguez-Sanchez, Belen
    JOURNAL OF CLINICAL MICROBIOLOGY, 2023, 61 (01)