Quantum-confined stark effects in a single GaN quantum dot

被引:1
|
作者
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China [1 ]
机构
[1] State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences
来源
Chin. Phys. Lett. | 2008年 / 7卷 / 2628-2630期
关键词
Nanocrystals;
D O I
10.1088/0256-307X/25/7/081
中图分类号
学科分类号
摘要
Using analytical expressions for the polarization field in GaN quantum dot, and an approximation by separating the potential into a radial and an axial, we investigate theoretically the quantum-confined Stark effects. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. The results show that the electron and hole energy levels and the optical transition energies can cause redshifts for the lateral electric field and blueshifts for the vertical field. The rotational direction of electric field can also change the energy shift. © 2008 Chinese Physical Society and IOP Publishing Ltd.
引用
收藏
页码:2628 / 2630
页数:2
相关论文
共 50 条
  • [31] Quantum dot developments
    Coe-Sullivan, Seth
    NATURE PHOTONICS, 2009, 3 (06) : 315 - 316
  • [32] Single quantum dot rectifying diode with tunable threshold voltage
    Kenath, Gopal S.
    Maity, Piyali
    Kumar, Yogesh
    Kumar, Hemant
    Gangwar, Vinod K.
    Chaterjee, Sandip
    Jit, Satyabrata
    Ghosh, Anup K.
    Pal, Bhola N.
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (37) : 9792 - 9798
  • [33] Hybrid Single Walled Carbon Nanotube - Quantum Dot Photosensors
    Rackauskas, Simas
    Alaferdov, Andrei V.
    Rackauskas, Tatiana
    Savu, Raluca
    Moshkalev, Stanislav A.
    Kauppinen, Esko I.
    Nasibulin, Albert G.
    Gromova, Yulia A.
    Baranov, Alexander V.
    Fedorov, Anatoly V.
    Nasibulin, Albert G.
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2015, : 354 - 357
  • [34] Programming Single Quantum Dot Valencies via DNA Caging
    Wang Li
    Li Zhi
    Shen Xiaoqin
    Ma Nan
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2018, 39 (01): : 32 - 40
  • [35] Strongly Quantum-Confined Perovskite Nanowire Arrays for Color-Tunable Blue-Light-Emitting Diodes
    Fu, Yu
    Poddar, Swapnadeep
    Ren, Beitao
    Xie, Ying
    Zhang, Qianpeng
    Zhang, Daquan
    Cao, Bryan
    Tang, Yunqi
    Ding, Yucheng
    Qiu, Xiao
    Shu, Lei
    Liao, Jin-Feng
    Kuang, Dai-Bin
    Fan, Zhiyong
    ACS NANO, 2022, 16 (05) : 8388 - 8398
  • [36] Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications
    Moon, Hyungsuk
    Lee, Changmin
    Lee, Woosuk
    Kim, Jungwoo
    Chae, Heeyeop
    ADVANCED MATERIALS, 2019, 31 (34)
  • [37] Hybrid CdSe-ZnS quantum dot-InGaN-GaN quantum well red light-emitting diodes
    Huang, Chun-Yuan
    Su, Yan-Kuin
    Chen, Ying-Chih
    Tsai, Ping-Chieh
    Wan, Cheng-Tien
    Li, Wen-Liang
    IEEE ELECTRON DEVICE LETTERS, 2008, 29 (07) : 711 - 713
  • [38] White-light-emitting diodes based on blue and green quantum-confined CsPbBr3 perovskite quantum dots and red CdSe quantum dots without ion-exchange issues
    Chang, Che-Yu
    Mahesh, K. P. O.
    Chen, Ting-Qing
    Hong, Wei-Li
    Lin, Yu-Min
    Tseng, Wei-Cheng
    Chen, Wei-Sheng
    Hsu, Ching-Ling
    Horng, Sheng-Fu
    Chao, Yu-Chiang
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (22) : 7311 - 7319
  • [39] Electro-Absorptive Quantum Dot Antenna Resolves Terahertz Lightwaves via Biased Stark Effect
    Heindl, Moritz B.
    Zhu, Hua
    Bawendi, Moungi G.
    Herink, Georg
    ACS PHOTONICS, 2023, 11 (01) : 13 - 17
  • [40] Persistent quantum confinement in a Germanium quantum dot solid
    Nadalini, Giacomo
    Borghi, Francesca
    Piseri, Paolo
    Di Vece, Marcel
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2023, 151