Quantum-confined stark effects in a single GaN quantum dot

被引:1
|
作者
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China [1 ]
机构
[1] State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences
来源
Chin. Phys. Lett. | 2008年 / 7卷 / 2628-2630期
关键词
Nanocrystals;
D O I
10.1088/0256-307X/25/7/081
中图分类号
学科分类号
摘要
Using analytical expressions for the polarization field in GaN quantum dot, and an approximation by separating the potential into a radial and an axial, we investigate theoretically the quantum-confined Stark effects. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. The results show that the electron and hole energy levels and the optical transition energies can cause redshifts for the lateral electric field and blueshifts for the vertical field. The rotational direction of electric field can also change the energy shift. © 2008 Chinese Physical Society and IOP Publishing Ltd.
引用
收藏
页码:2628 / 2630
页数:2
相关论文
共 50 条
  • [1] Quantum-Confined Stark Effect in Ensemble of Colloidal Semiconductor Quantum Dots
    Wang Zhi-Bing
    Zhang Hui-Chao
    Zhang Jia-Yu
    Su, Huaipeng
    Wang, Y. Andrew
    CHINESE PHYSICS LETTERS, 2010, 27 (12)
  • [2] Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature
    Park, KyoungWon
    Deutsch, Zvicka
    Li, J. Jack
    Oron, Dan
    Weiss, Shimon
    ACS NANO, 2012, 6 (11) : 10013 - 10023
  • [3] Blinking Mechanisms and Intrinsic Quantum-Confined Stark Effect in Single Methylammonium Lead Bromide Perovskite Quantum Dots
    Han, Xue
    Zhang, Guofeng
    Li, Bin
    Yang, Changgang
    Guo, Wenli
    Bai, Xiuqing
    Huang, Peng
    Chen, Ruiyun
    Qin, Chengbing
    Hu, Jianyong
    Ma, Yifei
    Zhong, Haizheng
    Xiao, Liantuan
    Jia, Suotang
    SMALL, 2020, 16 (51)
  • [4] Continuous supercritical route for quantum-confined GaN nanoparticles
    Giroire, B.
    Marre, S.
    Garcia, A.
    Cardinal, T.
    Aymonier, C.
    REACTION CHEMISTRY & ENGINEERING, 2016, 1 (02): : 151 - 155
  • [5] Synthesis of quantum-confined CdS nanotubes
    Mahapatra, A. K.
    JOURNAL OF NANOPARTICLE RESEARCH, 2009, 11 (02) : 467 - 475
  • [6] Advances in Quantum-Confined Perovskite Nanocrystals for Optoelectronics
    Polavarapu, Lakshminarayana
    Nickel, Bert
    Feldmann, Jochen
    Urban, Alexander S.
    ADVANCED ENERGY MATERIALS, 2017, 7 (16)
  • [7] Quantum-confined single photon emission at room temperature from SiC tetrapods
    Castelletto, Stefania
    Bodrog, Zoltan
    Magyar, Andrew P.
    Gentle, Angus
    Gali, Adam
    Aharonovich, Igor
    NANOSCALE, 2014, 6 (17) : 10027 - 10032
  • [8] Efficient Exciton Transport between Strongly Quantum-Confined Silicon Quantum Dots
    Lin, Zhibin
    Li, Huashan
    Franceschetti, Alberto
    Lusk, Mark T.
    ACS NANO, 2012, 6 (05) : 4029 - 4038
  • [9] Rapid Voltage Sensing with Single Nanorods via the Quantum Confined Stark Effect
    Bar-Elli, Omri
    Steinitz, Dan
    Yang, Gaoling
    Tenne, Ron
    Ludwig, Anastasia
    Kuo, Yung
    Triller, Antoine
    Weiss, Shimon
    Oron, Dan
    ACS PHOTONICS, 2018, 5 (07): : 2860 - 2867
  • [10] Defects mediated charge disturbance in quantum-confined AgxS/AgInS2 random alloys - Toward slowly decaying quantum dot emitters
    Cichy, Bartlomiej
    Olejniczak, Adam
    Bezkrovnyi, Oleksii
    Kepinski, Leszek
    Strek, Wieslaw
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 798 : 290 - 299