Prediction of Ionospheric Scintillations Using Machine Learning Techniques during Solar Cycle 24 across the Equatorial Anomaly

被引:0
|
作者
Nasurudiin, Sebwato [1 ,2 ]
Yoshikawa, Akimasa [3 ]
Elsaid, Ahmed [4 ,5 ]
Mahrous, Ayman [1 ,6 ]
机构
[1] Egypt Japan Univ Sci & Technol E JUST, Inst Basic & Appl Sci, Dept Space Environm, New Borg El Arab City 21934, Egypt
[2] Islamic Univ Uganda IUIU, Fac Sci, Dept Phys, Kumi Rd,POB 2555, Mbale, Uganda
[3] Kyushu Univ, Dept Earth & Planetary Sci, Fukuoka 8190395, Japan
[4] Egypt Japan Univ Sci & Technol E JUST, Inst Basic & Appl Sci, Dept Appl & Computat Math, New Borg El Arab City 21934, Egypt
[5] Mansoura Univ, Fac Engn, Dept Math & Engn Phys, Mansoura 35516, Egypt
[6] Helwan Univ, Fac Sci, Dept Phys, Cairo 11795, Egypt
关键词
machine learning; ensemble learning techniques; ionospheric scintillation; Random Forest algorithm; eXtreme Gradient Boosting algorithm; ELECTRIC-FIELD; IRREGULARITIES;
D O I
10.3390/atmos15101213
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ionospheric scintillation is a pressing issue in space weather studies due to its diverse effects on positioning, navigation, and timing (PNT) systems. Developing an accurate and timely prediction model for this event is crucial. In this work, we developed two machine learning models for the prediction of ionospheric scintillation events at the equatorial anomaly during the maximum and minimum phases of solar cycle 24. The models developed in this study are the Random Forest (RF) algorithm and the eXtreme Gradient Boosting (XGBoost) algorithm. The models take inputs based on the solar wind parameters obtained from the OMNI Web database from the years 2010-2017 and Pc5 wave power obtained from the Bear Island (BJN) magnetometer station. We retrieved data from the Scintillation Network and Decision Aid (SCINDA) receiver in Egypt from which the S4 index was computed to quantify amplitude scintillations that were utilized as the target in the model development. Out-of-sample model testing was performed to evaluate the prediction accuracy of the models on unseen data after training. The similarity between the observed and predicted scintillation events, quantified by the R2 score, was 0.66 and 0.74 for the RF and XGBoost models, respectively. The corresponding Root Mean Square Errors (RMSEs) associated with the models were 0.01 and 0.01 for the RF and XGBoost models, respectively. The similarity in error shows that the XGBoost model is a good and preferred choice for the prediction of ionospheric scintillation events at the equatorial anomaly. With these results, we recommend the use of ensemble learning techniques for the study of the ionospheric scintillation phenomenon.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ishan Ayus
    Narayanan Natarajan
    Deepak Gupta
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47 : 2437 - 2447
  • [42] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ayus, Ishan
    Natarajan, Narayanan
    Gupta, Deepak
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (04) : 2437 - 2447
  • [43] Morphological studies on ionospheric VHF scintillations over an Indian low latitude station during a solar cycle period (2001-2010)
    Prasad, S. N. V. S.
    Rao, P. V. S. Rama
    Prasad, D. S. V. V. D.
    Venkatesh, K.
    Niranjan, K.
    ADVANCES IN SPACE RESEARCH, 2012, 50 (01) : 56 - 69
  • [44] Climatology of ionospheric amplitude scintillation on GNSS signals at south American sector during solar cycle 24
    Macho, Eduardo Perez
    Correia, Emilia
    Spogli, Luca
    de Assis Honorato Muella, Marcio Tadeu
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2022, 231
  • [45] Prediction of Oestrus Cycle in Cattle Using Machine Learning in Kenya
    Aloo, Pascal O.
    Murimi, Evan W.
    Mutua, James M.
    Kagira, John M.
    Kyalo, Mathew N.
    SAIEE AFRICA RESEARCH JOURNAL, 2024, 115 (04): : 128 - 141
  • [46] An analytical method for diseases prediction using machine learning techniques
    Nilashi, Mehrbakhsh
    bin Ibrahim, Othman
    Ahmadi, Hossein
    Shahmoradi, Leila
    COMPUTERS & CHEMICAL ENGINEERING, 2017, 106 : 212 - 223
  • [47] A Prediction Model for Human Happiness Using Machine Learning Techniques
    Chaipornkaew, Piyanuch
    Prexawanprasut, Takorn
    2019 5TH INTERNATIONAL CONFERENCE ON SCIENCE ININFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0 - TOWARDS INNOVATION IN CYBER PHYSICAL SYSTEM, 2019, : 33 - 37
  • [48] Prediction of landing gear loads using machine learning techniques
    Holmes, Geoffrey
    Sartor, Pia
    Reed, Stephen
    Southern, Paul
    Worden, Keith
    Cross, Elizabeth
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2016, 15 (05): : 568 - 582
  • [49] Cloud Client Prediction Models Using Machine Learning Techniques
    Ajila, Samuel A.
    Bankole, Akindele A.
    2013 IEEE 37TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), 2013, : 134 - 142
  • [50] EARLY PREDICTION OF CERVICAL CANCER USING MACHINE LEARNING TECHNIQUES
    Al-Batah, Mohammad Subhi
    Alzyoud, Mazen
    Alazaidah, Raed
    Toubat, Malek
    Alzoubi, Haneen
    Olaiyat, Areej
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2022, 8 (04): : 357 - 369