A dual-path feature reuse multi-scale network for remote sensing image super-resolution

被引:1
|
作者
Xiao, Huanling [1 ]
Chen, Xintong [2 ]
Luo, Liuhui [1 ]
Lin, Cong [1 ,3 ]
机构
[1] Guangdong Ocean Univ, Sch Elect & Informat Engn, Zhanjiang 524000, Guangdong, Peoples R China
[2] Guangdong Ocean Univ, Sch Math & Comp Sci, Zhanjiang 524000, Guangdong, Peoples R China
[3] Hainan Univ, Coll Informat & Commun Engn, Haikou 570228, Hainan, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2025年 / 81卷 / 01期
关键词
Remote sensing; Image super-resolution; Dual-path feature; Attention mechanism; SEMANTIC SEGMENTATION; FUSION;
D O I
10.1007/s11227-024-06569-w
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep neural networks have achieved significant success in the super-resolution of remote sensing images. However, existing deep learning models still suffer from the issue of blurry pseudo-artifacts when restoring high-frequency details and textures. In this paper, a novel dual-path feature reuse multi-scale network (DFMNet) is proposed to more effectively utilize multi-scale features in remote sensing images, enhancing the detailed information in the restored images. Specifically, the designed dual-path feature reuse module adopts a symmetrical dual-path structure, with each path composed of convolutional layers of different sizes. This module enables deep feature reuse and multi-scale aggregation, improving the network's ability to handle and restore high-frequency details in the images. Furthermore, a cross-attention module is introduced to facilitate deep interactive fusion of multi-scale image features produced by the encoder output. Comparative experiments conducted on challenging UCMerced and AID remote sensing datasets demonstrate that the proposed DFMNet achieves superior performance in both objective and subjective evaluations.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Image super-resolution using supervised multi-scale feature extraction network
    Yemei Sun
    Yan Zhang
    Shudong Liu
    Weijia Lu
    Xianguo Li
    Multimedia Tools and Applications, 2021, 80 : 1995 - 2008
  • [22] Image super-resolution reconstruction based on multi-scale feature mapping network
    Duan R.
    Zhou D.-W.
    Zhao L.-J.
    Chai X.-L.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2019, 53 (07): : 1331 - 1339
  • [23] Compressed multi-scale feature fusion network for single image super-resolution
    Fan, Xinxia
    Yang, Yanhua
    Deng, Cheng
    Xu, Jie
    Gao, Xinbo
    SIGNAL PROCESSING, 2018, 146 : 50 - 60
  • [24] Multi-scale feature fusion residual network for Single Image Super-Resolution
    Qin, Jinghui
    Huang, Yongjie
    Wen, Wushao
    NEUROCOMPUTING, 2020, 379 (379) : 334 - 342
  • [25] Multi-scale attention network for image super-resolution
    Wang, Li
    Shen, Jie
    Tang, E.
    Zheng, Shengnan
    Xu, Lizhong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 80
  • [26] Multi-scale Residual Network for Image Super-Resolution
    Li, Juncheng
    Fang, Faming
    Mei, Kangfu
    Zhang, Guixu
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 527 - 542
  • [27] EFFECTIVE LIGHTWEIGHT DUAL-PATH SHIFT COMPENSATION NETWORK FOR IMAGE SUPER-RESOLUTION
    Yang, Yu
    Wang, Pan
    Wu, Yajuan
    COMPUTING AND INFORMATICS, 2024, 43 (02) : 393 - 413
  • [28] Dual-Path Feature Aware Network for Remote Sensing Image Semantic Segmentation
    Geng, Jie
    Song, Shuai
    Jiang, Wen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3674 - 3686
  • [29] Multi-Scale Fast Fourier Transform Based Attention Network for Remote-Sensing Image Super-Resolution
    Wang, Zheng
    Zhao, Yanwei
    Chen, Jiacheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 2728 - 2740
  • [30] Image Super-Resolution Using Multi-Scale Space Feature and Deformable Convolutional Network
    Jiang, Guosong
    Lu, Zhengwu
    Tu, Xuping
    Guan, Yurong
    Wang, Qingdong
    IEEE ACCESS, 2021, 9 : 74614 - 74621