A unified approach to the finite-horizon linear quadratic optimal control problem

被引:0
|
作者
Dipartimento di Ingegneria dell' Informazione, Università di Padova, via Gradenigo, 6/B, 35131 Padova, Italy [1 ]
不详 [2 ]
机构
来源
Eur J Control | 2007年 / 5卷 / 473-488期
基金
澳大利亚研究理事会;
关键词
Algebra - Hamiltonians - Optimal control systems - Quadratic programming - Riccati equations;
D O I
10.3166/ejc.13.473-488
中图分类号
学科分类号
摘要
Under the mild assumption of sign-controllability, a closed-form expression parameterizing all the solutions of the Hamiltonian differential equation over a finite time interval is presented in terms of a strongly unmixed solution of an algebraic Riccati equation (ARE) and of the solution of an algebraic Lyapunov equation. This result is employed for the solution of a generalized version of the finite-horizon linear quadratic (LQ) problem, encompassing the case of fixed end-point. Furthermore, it is shown how this methodcan be applied to the H 2 preview decoupling problem. © 2007 EUCA.
引用
收藏
相关论文
共 50 条
  • [1] A unified approach to the finite-horizon linear quadratic optimal control problem
    Ferrante, Augusto
    Ntogramatzidis, Lorenzo
    EUROPEAN JOURNAL OF CONTROL, 2007, 13 (05) : 473 - 488
  • [2] System identification approach for inverse optimal control of finite-horizon linear quadratic regulators
    Yu, Chengpu
    Li, Yao
    Fang, Hao
    Chen, Jie
    AUTOMATICA, 2021, 129 (129)
  • [3] Inverse optimal control for discrete-time finite-horizon Linear Quadratic Regulators
    Zhang, Han
    Umenberger, Jack
    Hu, Xiaoming
    AUTOMATICA, 2019, 110
  • [4] On the solution of the motion control problem as a finite-horizon optimal control problem
    De Abreu-Garcia, JA
    Cabrera-Arévalo, LA
    Madaras, JM
    IPEMC 2000: THIRD INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-3, PROCEEDINGS, 2000, : 1302 - 1307
  • [5] Finite-Horizon Optimal Control of Boolean Control Networks: A Unified Graph-Theoretical Approach
    Gao, Shuhua
    Sun, Changkai
    Xiang, Cheng
    Qin, Kairong
    Lee, Tong Heng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (01) : 157 - 171
  • [6] Finite-Horizon Indefinite Mean-Field Stochastic Linear-Quadratic Optimal Control
    Ni, Yuan-Hua
    Li, Xun
    Zhang, Ji-Feng
    IFAC PAPERSONLINE, 2015, 48 (28): : 211 - 216
  • [7] Optimal quadratic solution for the non-Gaussian finite-horizon regulator problem
    Germani, Alfredo
    Mavelli, Gabriella
    Systems and Control Letters, 1999, 38 (4-5): : 321 - 331
  • [8] Finite-horizon and infinite-horizon linear quadratic optimal control problems: A data-driven Euler scheme
    Wang, Guangchen
    Zhang, Heng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (13):
  • [9] Optimal quadratic solution for the non-Gaussian finite-horizon regulator problem
    Germani, A
    Mavelli, G
    SYSTEMS & CONTROL LETTERS, 1999, 38 (4-5) : 321 - 331
  • [10] A Finite-Horizon Inverse Linear Quadratic Optimal Control Method for Human-in-the-Loop Behavior Learning
    Wu, Huai-Ning
    Li, Wen-Hua
    Wang, Mi
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (06): : 3461 - 3470