ARL: analogical reinforcement learning for knowledge graph reasoning

被引:0
|
作者
Xia, Nan [1 ,2 ]
Wang, Yin [1 ,2 ]
Zhang, Run-Fa [3 ]
Luo, Xiangfeng [1 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, 99 Shangda Rd, Shanghai 200444, Peoples R China
[2] Shanghai ArtiTech AI Technol Co Ltd, Res & Dev Dept, 290 Tianmu West Rd, Shanghai 200070, Peoples R China
[3] Shanxi Univ, Sch Automat & Software Engn, 63 East NanZhong St, Taiyuan 030013, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge graph reasoning; Analogical reinforcement learning; Island nodes; Virtual link;
D O I
10.1007/s10618-024-01080-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reinforcement Learning (RL) knowledge graph reasoning aims to predict complete triplets by learning existing relationship paths. This greatly improves the efficiency of prediction because the RL-based methods do not traverse all entities and relations like representation reasoning. Meanwhile, this kind of method increases the interpretability of reasoning. However, due to the necessity of normalizing the entity outdegree matrices for neural network computations in each step of the retrieval process in reinforcement learning, entities with an excessively high number of outdegrees compel the RL-based model to restrict the retrieval space of each path. Consequently, this limitation leads to the omission of some correct answers. Moreover, for some isolated tail entities with sparse connections, this path-based reasoning will lose these island nodes. To solve both problems, we propose an analogy-based reinforcement learning model named Analogical Reinforcement Learning network (ARL). This model features a novel analogy reinforcement learning architecture, dynamic graph attention networks, and our proprietary AODS algorithm. It injects entity analogy information into the model's reasoning process and employs virtual link generation, which not only enhances the probability of paths getting rewards, but also increases the breadth of path connection and brings more possibilities for island nodes. In the meantime, we analyze and compare various analogy methods in detail. Experimental results show that ARL outperforms existing multi-hop methods on several datasets.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [1] Causal Reinforcement Learning for Knowledge Graph Reasoning
    Li, Dezhi
    Lu, Yunjun
    Wu, Jianping
    Zhou, Wenlu
    Zeng, Guangjun
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [2] Adversary and Attention Guided Knowledge Graph Reasoning Based on Reinforcement Learning
    Yu, Yanhua
    Cai, Xiuxiu
    Ma, Ang
    Ren, Yimeng
    Zhen, Shuai
    Li, Jie
    Lu, Kangkang
    Huang, Zhiyong
    Chua, Tat-Seng
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT V, KSEM 2024, 2024, 14888 : 3 - 16
  • [3] Multi-hop Knowledge Graph Reasoning Based on Hyperbolic Knowledge Graph Embedding and Reinforcement Learning
    Zhou, Xingchen
    Wang, Peng
    Luo, Qiqing
    Pan, Zhe
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS (IJCKG 2021), 2021, : 1 - 9
  • [4] Hierarchical Reinforcement Learning for Conversational Recommendation With Knowledge Graph Reasoning and Heterogeneous Questions
    Yang, Yao-Chun
    Chen, Chiao-Ting
    Lu, Tzu-Yu
    Huang, Szu-Hao
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (05) : 3439 - 3452
  • [5] Reinforcement learning-based knowledge graph reasoning for aluminum alloy applications
    Liu, Jian
    Qian, Quan
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 221
  • [6] DAPath: Distance-aware knowledge graph reasoning based on deep reinforcement learning
    Tiwari, Prayag
    Zhu, Hongyin
    Pandey, Hari Mohan
    NEURAL NETWORKS, 2021, 135 : 1 - 12
  • [7] MemoryPath: A deep reinforcement learning framework for incorporating memory component into knowledge graph reasoning
    Li, Shuangyin
    Wang, Heng
    Pan, Rong
    Mao, Mingzhi
    NEUROCOMPUTING, 2021, 419 : 273 - 286
  • [8] Hierarchical Policy Network with Multi-agent for Knowledge Graph Reasoning Based on Reinforcement Learning
    Zheng, Mingming
    Zhou, Yanquan
    Cui, Qingyao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2021, 12815 : 445 - 457
  • [9] Reinforcement knowledge graph reasoning based on dual agents and attention mechanism
    Yang, Xu-Hua
    Wang, Tao
    Gan, Ji-Song
    Gao, Liang-Yu
    Ma, Gang-Feng
    Zhou, Yan-Bo
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [10] A collaborative learning framework for knowledge graph embedding and reasoning
    Wang, Hao
    Song, Dandan
    Wu, Zhijing
    Li, Jia
    Zhou, Yanru
    Xu, Jing
    KNOWLEDGE-BASED SYSTEMS, 2024, 289