Channel Self-Attention Based Multiscale Spatial-Frequency Domain Network for Oriented Object Detection in Remote Sensing Imagery

被引:0
|
作者
Xu, Yang [1 ]
Pan, Yushan [1 ]
Wu, Zebin [1 ]
Wei, Zhihui [1 ]
Zhan, Tianming [2 ,3 ]
机构
[1] Nanjing Univ Sci & Technol NJUST, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Audit Univ, Jiangsu Key Construct Lab Audit Informat Engn, Nanjing 211815, Peoples R China
[3] Nanjing Audit Univ, Sch Informat Engn, Nanjing 211815, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Frequency-domain analysis; Detectors; Remote sensing; Object detection; Data mining; Attention mechanisms; Wavelet transforms; Convolution; Semantics; Fusion features; Haar wavelet transform; oriented object detection; remote sensing imagery; spatial-frequency domain;
D O I
10.1109/TGRS.2024.3500013
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The detection of oriented objects in remote sensing images remains a daunting challenge due to their complex backgrounds, various sizes, and especially arbitrary orientations. However, most of the existing methods only model the structural features of the images in the spatial domain, while the horizontal convolution kernels limit the model's ability to perceive object direction information. Furthermore, the frequency features contain rich information about scale, texture, and angle, which can be a good complement to the spatial features. Inspired by this, we propose a multiscale spatial-frequency domain network (MSFN) to utilize spatial-frequency information for oriented object detection, which can be integrated into any convolutional neural network (CNN) architectures seamlessly and perform end-to-end training easily. Firstly, multiscale Haar wavelet transforms are leveraged to extract the multiscale frequency domain features from the image. Subsequently, channel alignment feature fusion module (CA-FFM) is proposed to fuse the high-level semantic features extracted by CNN with the low-level texture features extracted by the wavelet transform in multiscale. Finally, a channel self-attention (CSA)-based spatial-frequency feature perception module (SFPM) is designed to perform self-attention weighted aggregation on the fused features along the channel dimension, thereby constructing a novel spatial-frequency feature extraction backbone network for oriented object detector in remote sensing images. Experimental results on the DOTA and HRSC2016 datasets validate the effectiveness and universality of the proposed method.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Object counting in remote sensing via selective spatial-frequency pyramid network
    Chen, Jinyong
    Gao, Mingliang
    Guo, Xiangyu
    Zhai, Wenzhe
    Li, Qilei
    Jeon, Gwanggil
    SOFTWARE-PRACTICE & EXPERIENCE, 2024, 54 (09) : 1754 - 1773
  • [42] Few-Shot Object Detection With Self-Adaptive Attention Network for Remote Sensing Images
    Xiao, Zixuan
    Qi, Jiahao
    Xue, Wei
    Zhong, Ping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4854 - 4865
  • [43] A New Spatial-Oriented Object Detection Framework for Remote Sensing Images
    Yu, Dawen
    Ji, Shunping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] Semantic Segmentation of Remote Sensing Image Based on Regional Self-Attention Mechanism
    Zhao, Danpei
    Wang, Chenxu
    Gao, Yue
    Shi, Zhenwei
    Xie, Fengying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [45] MFDAFF-Net: Multiscale Frequency-Aware and Dual Attention-Guided Feature Fusion Network for UAV Imagery Object Detection
    Tian, Shu
    Zhang, Bingxi
    Cao, Lin
    Kang, Lihong
    Tian, Jing
    Xing, Xiangwei
    Shen, Bo
    Fan, Chunzhuo
    Du, Kangning
    Fu, Chong
    Zhang, Ye
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 10640 - 10656
  • [46] Feature Pyramid Full Granularity Attention Network for Object Detection in Remote Sensing Imagery
    Liu, Chang
    Qi, Xiao
    Yin, Hang
    Song, Bowei
    Li, Ke
    Shen, Fei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT X, ICIC 2024, 2024, 14871 : 332 - 353
  • [47] Multiscale Deformable Attention and Multilevel Features Aggregation for Remote Sensing Object Detection
    Dong, Xiaohu
    Qin, Yao
    Fu, Ruigang
    Gao, Yinghui
    Liu, Songlin
    Ye, Yuanxin
    Li, Biao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [48] Remote Sensing Teacher: Cross-Domain Detection Transformer With Learnable Frequency-Enhanced Feature Alignment in Remote Sensing Imagery
    Han, Jianhong
    Yang, Wenjie
    Wang, Yupei
    Chen, Liang
    Luo, Zhaoyi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [49] Dual-Resolution and Deformable Multihead Network for Oriented Object Detection in Remote Sensing Images
    Yu, Donghang
    Xu, Qing
    Liu, Xiangyun
    Guo, Haitao
    Lu, Jun
    Lin, Yuzhun
    Lv, Liang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 930 - 945
  • [50] An Adaptive Multiscale Fusion Network Based on Regional Attention for Remote Sensing Images
    Lu, Wanzhen
    Liang, Longxue
    Wu, Xiaosuo
    Wang, Xiaoyu
    Cai, Jiali
    IEEE ACCESS, 2020, 8 : 107802 - 107813