Channel Self-Attention Based Multiscale Spatial-Frequency Domain Network for Oriented Object Detection in Remote Sensing Imagery

被引:0
|
作者
Xu, Yang [1 ]
Pan, Yushan [1 ]
Wu, Zebin [1 ]
Wei, Zhihui [1 ]
Zhan, Tianming [2 ,3 ]
机构
[1] Nanjing Univ Sci & Technol NJUST, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Audit Univ, Jiangsu Key Construct Lab Audit Informat Engn, Nanjing 211815, Peoples R China
[3] Nanjing Audit Univ, Sch Informat Engn, Nanjing 211815, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Frequency-domain analysis; Detectors; Remote sensing; Object detection; Data mining; Attention mechanisms; Wavelet transforms; Convolution; Semantics; Fusion features; Haar wavelet transform; oriented object detection; remote sensing imagery; spatial-frequency domain;
D O I
10.1109/TGRS.2024.3500013
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The detection of oriented objects in remote sensing images remains a daunting challenge due to their complex backgrounds, various sizes, and especially arbitrary orientations. However, most of the existing methods only model the structural features of the images in the spatial domain, while the horizontal convolution kernels limit the model's ability to perceive object direction information. Furthermore, the frequency features contain rich information about scale, texture, and angle, which can be a good complement to the spatial features. Inspired by this, we propose a multiscale spatial-frequency domain network (MSFN) to utilize spatial-frequency information for oriented object detection, which can be integrated into any convolutional neural network (CNN) architectures seamlessly and perform end-to-end training easily. Firstly, multiscale Haar wavelet transforms are leveraged to extract the multiscale frequency domain features from the image. Subsequently, channel alignment feature fusion module (CA-FFM) is proposed to fuse the high-level semantic features extracted by CNN with the low-level texture features extracted by the wavelet transform in multiscale. Finally, a channel self-attention (CSA)-based spatial-frequency feature perception module (SFPM) is designed to perform self-attention weighted aggregation on the fused features along the channel dimension, thereby constructing a novel spatial-frequency feature extraction backbone network for oriented object detector in remote sensing images. Experimental results on the DOTA and HRSC2016 datasets validate the effectiveness and universality of the proposed method.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Composite Perception and Multiscale Fusion Network for Arbitrary-Oriented Object Detection in Remote Sensing Imagery
    Bai, Peng
    Xia, Ying
    Feng, Jiangfan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [2] Instance-Aware Spatial-Frequency Feature Fusion Detector for Oriented Object Detection in Remote-Sensing Images
    Zheng, Shangdong
    Wu, Zebin
    Xu, Yang
    Wei, Zhihui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [3] Lightweight Oriented Object Detection Using Multiscale Context and Enhanced Channel Attention in Remote Sensing Images
    Ran, Qiong
    Wang, Qing
    Zhao, Boya
    Wu, Yuanfeng
    Pu, Shengliang
    Li, Zijin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 5786 - 5795
  • [4] ABNet: Adaptive Balanced Network for Multiscale Object Detection in Remote Sensing Imagery
    Liu, Yanfeng
    Li, Qiang
    Yuan, Yuan
    Du, Qian
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Context-Based Oriented Object Detector for Small Objects in Remote Sensing Imagery
    Jiang, Qunyan
    Dai, Juying
    Rui, Ting
    Shao, Faming
    Lu, Guanlin
    Wang, Jinkang
    IEEE ACCESS, 2022, 10 : 100526 - 100539
  • [6] Multiscale Change Detection Network Based on Channel Attention and Fully Convolutional BiLSTM for Medium-Resolution Remote Sensing Imagery
    Li, Jialu
    Hu, Meiqi
    Wu, Chen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 10162 - 10175
  • [7] An Efficient Feature Pyramid Network for Object Detection in Remote Sensing Imagery
    Fang Qingyun
    Zhang Lin
    Wang Zhaokui
    IEEE ACCESS, 2020, 8 : 93058 - 93068
  • [8] Multi-Scale Spatial and Channel-wise Attention for Improving Object Detection in Remote Sensing Imagery
    Chen, Jie
    Wan, Li
    Zhu, Jingru
    Xu, Gang
    Deng, Min
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (04) : 681 - 685
  • [9] Dual-Attention-Driven Multiscale Fusion Object Searching Network for Remote Sensing Imagery
    Fu, Haolong
    Li, Qingpeng
    Duan, Puhong
    Lin, Jiacheng
    Dian, Renwei
    Li, Shutao
    Kang, Xudong
    Li, Zhiyong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8131 - 8141
  • [10] Self-Training-Based Unsupervised Domain Adaptation for Object Detection in Remote Sensing Imagery
    Luo, Sihao
    Ma, Li
    Yang, Xiaoquan
    Luo, Dapeng
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62