An Improved Deep Learning Unsupervised Approach for MRI Tissue Segmentation for Alzheimer's Disease Detection

被引:0
|
作者
Kumar, Karan [1 ]
Suwalka, Isha [2 ]
Uche-Ezennia, Adaora [3 ]
Iwendi, Celestine [4 ]
Biamba, Cresantus N. [5 ]
机构
[1] Maharishi Markandeshwar, Maharishi Markandeshwar Engn Coll, Elect & Commun Engn Dept, Ambala 1332070, India
[2] Indira IVF Hosp Private Ltd, Udaipur 313007, Rajasthan, India
[3] Univ Bolton, Bolton BL3 5AB, England
[4] Univ Bolton, Sch Creat Technol, Bolton BL3 5AB, England
[5] Univ Gavle, Dept Educ Sci, S-80176 Gavle, Sweden
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Magnetic resonance imaging; Feature extraction; Convolutional neural networks; Noise; Diseases; Deep learning; Filtering algorithms; Alzheimer's disease; Image segmentation; Accuracy; Adaptive moving mapping; clustering; feature extraction; OASIS; MILD COGNITIVE IMPAIRMENT; CLASSIFICATION; DIAGNOSIS; NETWORK;
D O I
10.1109/ACCESS.2024.3510454
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Alzheimer's disease (AD) ranks as the sixth leading cause of death, emphasizing the need for early-stage prediction to prevent its progression. Due to the complexity and heterogeneity of medical tests, manually comparing, visualizing, and analyzing data is often difficult and time-consuming. As a result, a computational approach for accurately predicting brain changes through the classification of magnetic resonance imaging (MRI) scans becomes highly valuable, though challenging. This paper introduces a novel method for diagnosing the early stages of AD by utilizing an efficient mapping technique to differentiate between affected and normal MRI scans. The approach combines a hybrid unsupervised learning framework, specifically the adaptive moving self-organizing map (AMSOM) method integrated with Fuzzy K-means. To ensure optimal feature extraction, we introduce a hybrid learning framework that embeds feature vectors in a subspace. The analysis compares various mapping approaches to identify features linked to Alzheimer's disease. The proposed method achieves a classification accuracy of 95.75% on the Open Access Series of Imaging Studies (OASIS) MRI brain image database, outperforming existing methods.
引用
收藏
页码:188114 / 188121
页数:8
相关论文
共 50 条
  • [21] Automatic Detection of Alzheimer's Disease using Deep Learning Models and Neuro-Imaging: Current Trends and Future Perspectives
    Illakiya, T.
    Karthik, R.
    NEUROINFORMATICS, 2023, 21 (02) : 339 - 364
  • [22] Deep Learning Approach for Early Detection of Alzheimer’s Disease
    Hadeer A. Helaly
    Mahmoud Badawy
    Amira Y. Haikal
    Cognitive Computation, 2022, 14 : 1711 - 1727
  • [23] A deep learning MRI approach outperforms other biomarkers of prodromal Alzheimer's disease
    Feng, Xinyang
    Provenzano, Frank A.
    Small, Scott A.
    ALZHEIMERS RESEARCH & THERAPY, 2022, 14 (01)
  • [24] Deep Learning Approach for Early Detection of Alzheimer's Disease
    Helaly, Hadeer A.
    Badawy, Mahmoud
    Haikal, Amira Y.
    COGNITIVE COMPUTATION, 2022, 14 (05) : 1711 - 1727
  • [25] MRI Deep Learning-Based Solution for Alzheimer's Disease Prediction
    Saratxaga, Cristina L.
    Moya, Iratxe
    Picon, Artzai
    Acosta, Marina
    Moreno-Fernandez-de-Leceta, Aitor
    Garrote, Estibaliz
    Bereciartua-Perez, Arantza
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09):
  • [26] An Introduction to Deep Learning Research for Alzheimer's Disease
    Nguyen, Hoang
    Chu, Narisa N.
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2021, 10 (03) : 72 - 74
  • [27] Accurate Detection of Alzheimer's Disease Using Lightweight Deep Learning Model on MRI Data
    El-Latif, Ahmed A. Abd
    Chelloug, Samia Allaoua
    Alabdulhafith, Maali
    Hammad, Mohamed
    DIAGNOSTICS, 2023, 13 (07)
  • [28] Deep and hybrid learning of MRI diagnosis for early detection of the progression stages in Alzheimer's disease
    Abunadi, Ibrahim
    CONNECTION SCIENCE, 2022, 34 (01) : 2395 - 2430
  • [29] Novel Deep-Learning Approach for Automatic Diagnosis of Alzheimer's Disease from MRI
    Altwijri, Omar
    Alanazi, Reem
    Aleid, Adham
    Alhussaini, Khalid
    Aloqalaa, Ziyad
    Almijalli, Mohammed
    Saad, Ali
    Pisarchik, Alexander N.
    APPLIED SCIENCES-BASEL, 2023, 13 (24):
  • [30] 3-D CNN-Based Multichannel Contrastive Learning for Alzheimer's Disease Automatic Diagnosis
    Li, Jiaguang
    Wei, Ying
    Wang, Chuyuan
    Hu, Qian
    Liu, Yue
    Xu, Long
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71