Polymer Electrolyte Based All-Solid-State Rechargeable Fluoride Ion Batteries

被引:0
|
作者
Yu, Yifan [1 ,2 ,3 ]
Li, Guyue [1 ,2 ,3 ]
Li, Chilin [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, 585 He Shuo Rd, Shanghai 201899, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, CAS Key Lab Mat Energy Convers, Shanghai Inst Ceram, Shanghai 201899, Peoples R China
基金
中国国家自然科学基金;
关键词
all-solid-state batteries; fluoride ion batteries; polymer electrolyte; PHOTOELECTRON-SPECTROSCOPY; CATHODE; ALKALI;
D O I
10.1002/adfm.202410891
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable fluoride ion batteries (FIBs) are one of the most promising energy storage candidates in view of high energy density and low cost. The development of highly F-conductive, safe, and flexible electrolytes is the central task for the construction of high-performance FIBs. Hereby, this work first proposes a polyvinyl alcohol (PVA)-borax-glycerol (PBG) polymer electrolyte. The F- transport along one PVA chain is realized by the interaction between F- and -OH on the PVA chain and the motion of PVA chain would facilitate the migration of F-. The B(OH)4- dissociated from borax can be used as a cross-linking agent, and react with the hydroxyl groups on PVA by a dehydration process to form a polymer with a 3D cross-linked structure. The optimized ionic conductivity (as high as 2.82 x 10-4 S cm-1 at 30 degrees C and 1.08 x 10-3 S cm-1 at 60 degrees C) of PBG can be obtained. The flat and soft surface of PBG electrolytes can significantly reduce the activation energy for the interfacial transport process. Benefitting from the high ionic conductivity and easier interfacial transport, the PBG electrolyte makes the all-solid-state FIBs enable reversible cycling at a high current density of 125 mA g-1.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Two routes for N-rich solid polymer electrolyte for all-solid-state lithium-ion batteries
    Artigues, L.
    Benkhaled, B. T.
    Chaudoy, V.
    Monconduit, L.
    Lapinte, V.
    SOLID STATE IONICS, 2022, 388
  • [42] A solid polymer electrolyte containing a novel lithium borate salt for all-solid-state lithium-ion batteries
    Xiao, Yao
    Bao, Lixia
    Lei, Jingxin
    POLYMERS & POLYMER COMPOSITES, 2021, 29 (05): : 323 - 330
  • [43] Superior Blends Solid Polymer Electrolyte with Integrated Hierarchical Architectures for All-Solid-State Lithium-Ion Batteries
    Zhang, Dechao
    Zhang, Long
    Yang, Kun
    Wang, Hongqiang
    Yu, Chuang
    Xu, Di
    Xu, Bo
    Wang, Li-Min
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (42) : 36886 - 36896
  • [44] Manganese electrode for all-solid-state fluoride batteries
    Inoishi, Atsushi
    Setoguchi, Naoko
    Motoyama, Megumi
    Okada, Shigeto
    Sakaebe, Hikari
    CHEMICAL COMMUNICATIONS, 2025, 61 (08) : 1645 - 1648
  • [45] Recent advances in all-solid-state rechargeable lithium batteries
    Sun, Chunwen
    Liu, Jin
    Gong, Yudong
    Wilkinson, David P.
    Zhang, Jiujun
    NANO ENERGY, 2017, 33 : 363 - 386
  • [46] High-Rate Solid Polymer Electrolyte Based Flexible All-Solid-State Lithium Metal Batteries
    Wang, Zhiyan
    Ma, Junfeng
    Cui, Ping
    Yao, Xiayin
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (30) : 34649 - 34655
  • [47] A solid polymer electrolyte based on star-like hyperbranched β-cyclodextrin for all-solid-state sodium batteries
    Chen, Suli
    Feng, Fan
    Yin, Yimei
    Che, Haiying
    Liao, Xiao-Zhen
    Ma, Zi-Feng
    JOURNAL OF POWER SOURCES, 2018, 399 : 363 - 371
  • [48] All solid state lithium ion rechargeable batteries using NASICON structured electrolyte
    Li, L. (luli@nus.edu.sg), 1600, Maney Publishing (08):
  • [49] All solid state lithium ion rechargeable batteries using NASICON structured electrolyte
    Feng, J. K.
    Yan, B. G.
    Liu, J. C.
    Lai, M. O.
    Li, L.
    MATERIALS TECHNOLOGY, 2013, 28 (05) : 276 - 279
  • [50] Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries
    Lua, Fei
    Li, Gaoran
    Yu, Yang
    Gao, Xinpei
    Zheng, Liqiang
    Chen, Zhongwei
    CHEMICAL ENGINEERING JOURNAL, 2020, 384