Polymer Electrolyte Based All-Solid-State Rechargeable Fluoride Ion Batteries

被引:0
|
作者
Yu, Yifan [1 ,2 ,3 ]
Li, Guyue [1 ,2 ,3 ]
Li, Chilin [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, 585 He Shuo Rd, Shanghai 201899, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, CAS Key Lab Mat Energy Convers, Shanghai Inst Ceram, Shanghai 201899, Peoples R China
基金
中国国家自然科学基金;
关键词
all-solid-state batteries; fluoride ion batteries; polymer electrolyte; PHOTOELECTRON-SPECTROSCOPY; CATHODE; ALKALI;
D O I
10.1002/adfm.202410891
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable fluoride ion batteries (FIBs) are one of the most promising energy storage candidates in view of high energy density and low cost. The development of highly F-conductive, safe, and flexible electrolytes is the central task for the construction of high-performance FIBs. Hereby, this work first proposes a polyvinyl alcohol (PVA)-borax-glycerol (PBG) polymer electrolyte. The F- transport along one PVA chain is realized by the interaction between F- and -OH on the PVA chain and the motion of PVA chain would facilitate the migration of F-. The B(OH)4- dissociated from borax can be used as a cross-linking agent, and react with the hydroxyl groups on PVA by a dehydration process to form a polymer with a 3D cross-linked structure. The optimized ionic conductivity (as high as 2.82 x 10-4 S cm-1 at 30 degrees C and 1.08 x 10-3 S cm-1 at 60 degrees C) of PBG can be obtained. The flat and soft surface of PBG electrolytes can significantly reduce the activation energy for the interfacial transport process. Benefitting from the high ionic conductivity and easier interfacial transport, the PBG electrolyte makes the all-solid-state FIBs enable reversible cycling at a high current density of 125 mA g-1.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] High Conductive Composite Polymer Electrolyte via in Situ UV-Curing for All-Solid-State Lithium Ion Batteries
    Qiu, Ziwen
    Liu, Chang
    Xin, Jing
    Wang, Qian
    Wu, Jiajie
    Wang, Wenli
    Zhou, Jingjing
    Liu, Yang
    Guo, Bingkun
    Shi, Siqi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (11) : 9875 - 9880
  • [22] Impact of degradation mechanisms at the cathode/electrolyte interface of garnet-based all-solid-state batteries
    Clausnitzer, Moritz
    Ihrig, Martin
    Cressa, Luca
    Hein, Simon
    Finsterbusch, Martin
    Eswara, Santhana
    Kuo, Liang-Yin
    Danner, Timo
    Kaghazchi, Payam
    Fattakhova-Rohlfing, Dina
    Guillon, Olivier
    Latz, Arnulf
    ENERGY STORAGE MATERIALS, 2024, 67
  • [23] Toward Practical All-solid-state Batteries with Sulfide Electrolyte: A Review
    Yuan, Hong
    Liu, Jia
    Lu, Yang
    Zhao, Chenzi
    Cheng, Xinbing
    Nan, Haoxiong
    Liu, Quanbing
    Huang, Jiaqi
    Zhang, Qiang
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (03) : 377 - 385
  • [24] Silicon-carbide fiber-reinforced polymer electrolyte for all-solid-state lithium-metal batteries
    Wen-Qing Wei
    Bing-Qiang Liu
    Yan-Qing Wang
    Kai Yan
    Hao Zhang
    Yu-Song Qi
    Rare Metals, 2022, 41 : 3774 - 3782
  • [25] Silicon-carbide fiber-reinforced polymer electrolyte for all-solid-state lithium-metal batteries
    Wei, Wen-Qing
    Liu, Bing-Qiang
    Wang, Yan-Qing
    Yan, Kai
    Zhang, Hao
    Qi, Yu-Song
    RARE METALS, 2022, 41 (11) : 3774 - 3782
  • [26] Current challenges and progress in anode/electrolyte interfaces of all-solid-state lithium batteries
    Ma, Liang
    Dong, Yu
    Li, Ning
    Yan, Wengang
    Ma, Siyuan
    Fang, Youyou
    Li, Yongjian
    Xu, Lifeng
    Liu, Cai
    Chen, Sheng
    Feng, Renchao
    Chen, Lai
    Cao, Duanyun
    Lu, Yun
    Huang, Qing
    Su, Yuefeng
    Wu, Feng
    ETRANSPORTATION, 2024, 20
  • [27] Enabling high-performance all-solid-state hybrid-ion batteries with a PEO-based electrolyte
    Yu, Meng-Xuan
    Gu, Zhen-Yi
    Guo, Jin-Zhi
    Wang, Chun-Gang
    Wu, Xing-Long
    CHEMICAL COMMUNICATIONS, 2022, 58 (48) : 6813 - 6816
  • [28] Interface Engineering of All-Solid-State Batteries Based on Inorganic Solid Electrolytes
    Xi, Lei
    Zhang, Dechao
    Xu, Xijun
    Wu, Yiwen
    Li, Fangkun
    Yao, Shiyan
    Zhu, Min
    Liu, Jun
    CHEMSUSCHEM, 2023, 16 (09)
  • [29] Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes
    Wang, Shuo
    Fang, Ruyi
    Li, Yutao
    Liu, Yuan
    Xin, Chengzhou
    Richter, Felix H.
    Nan, Ce-Wen
    JOURNAL OF MATERIOMICS, 2021, 7 (02) : 209 - 218
  • [30] A free-standing and thermostable polymer/plastic crystal electrolyte for all-solid-state lithium batteries
    Dong, Yuan
    Ding, Tianjie
    Fan, Li-Zhen
    IONICS, 2017, 23 (12) : 3339 - 3345