Ultra-low frequency active vibration isolation system with quasi-zero stiffness characteristic using self-tuning filter-based feedforward control

被引:2
作者
Li, Tian-Yi [1 ,2 ]
Yu, Cheng-Long [1 ,2 ]
Yu, Xu-Yang [1 ,2 ]
Li, Bin [1 ,2 ]
Zhao, Bo [1 ,2 ]
Tan, Jiu-bin [1 ,2 ]
机构
[1] Harbin Inst Technol, Ctr Ultraprecis Optoelect Instrument Engn, Harbin, Peoples R China
[2] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Ultraprecis Intelligent Instrumentat, Harbin 150080, Peoples R China
关键词
Active vibration isolation; Feedforward control; Self-tuning filter; Quasi-zero stiffness; DESIGN; IDENTIFICATION;
D O I
10.1016/j.jsv.2024.118848
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Purpose of study: This study aims to resolve the compromise between low suspension stiffness and high load-bearing capability in vibration isolation and enhance the suppression performance of ultra-low frequency vibration through advanced active feedforward control methods, featuring high-performance precision isolation for large-scale ultra-precision instruments. Describe methods: An air-magnetic hybrid parallel configuration of positive and negative stiffness is employed to achieve adjustable stiffness, endowing the vibration isolation system with quasizero stiffness characteristics. A novel self-tuning feedforward control strategy is proposed through a self-tuning filter to update the controller parameters online, minimizing the loss caused by model uncertainties. Results: The vertical and horizontal natural frequencies of the system exhibit a remarkably low resonance frequency of lower than 0.5 Hz. With the self-tuning feedforward strategy, the maximum vibration attenuation reaches 78 dB in the vertical direction and 70 dB in the horizontal direction, reducing the cumulative power at 100 Hz by 61.4 % and 47.8 %, respectively. The above results showcase the proposed approach with excellent performance in isolating lowfrequency vibrations. Conclusions/Discussion: The ultra-low frequency active vibration isolation system designed in this paper achieves exceptionally low suspension stiffness. The implemented self-tuning feedforward controller isolates large precision machinery from broadband floor vibrations and significantly enhances the vibration isolation performance of the system.
引用
收藏
页数:17
相关论文
共 34 条
  • [1] Ultra-low frequency vibration isolation of a novel click-beetle-inspired structure with large quasi-zero stiffness region
    Ling, Peng
    Miao, Lunlun
    Ye, Bingliang
    You, Jin
    Zhang, Wenming
    Yan, Bo
    JOURNAL OF SOUND AND VIBRATION, 2023, 558
  • [2] A study on a low-frequency active vibration isolation platform based on quasi-zero stiffness supporting structures
    Li, Qing
    He, Keda
    Yang, Hongjie
    Xue, Yujun
    Ma, Chao
    Wang, Tianshu
    Liu, Lei
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (16): : 84 - 91and117
  • [3] Dynamic research on a low-frequency vibration isolation system of quasi-zero stiffness
    Jurevicius, M.
    Vekteris, V.
    Viselga, G.
    Turla, V
    Kilikevicius, A.
    Iljin, I.
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2019, 38 (02) : 684 - 691
  • [4] Customized quasi-zero-stiffness metamaterials for ultra-low frequency broadband vibration isolation
    Liu, Ji
    Wang, Yanhui
    Yang, Shaoqiong
    Sun, Tongshuai
    Yang, Ming
    Niu, Wendong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 269
  • [5] An Origami-Inspired Quasi-zero Stiffness Structure for Low-Frequency Vibration Isolation
    Zeng, Peng
    Yang, Yuanhan
    Huang, Long
    Yin, Lairong
    Liu, Bei
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (04) : 1463 - 1475
  • [6] Nonlinear Low Frequency Response Research for a Vibration Isolator with Quasi-Zero Stiffness Characteristic
    Yue Zhang
    Yufeng Mao
    Zhen Wang
    Chengfei Gao
    KSCE Journal of Civil Engineering, 2021, 25 : 1849 - 1856
  • [7] A quasi-zero stiffness mechanism with monolithic flexible beams for low-frequency vibration isolation
    Hou, Shuai
    Wei, Jianzheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 210
  • [8] Nonlinear Low Frequency Response Research for a Vibration Isolator with Quasi-Zero Stiffness Characteristic
    Zhang, Yue
    Mao, Yufeng
    Wang, Zhen
    Gao, Chengfei
    KSCE JOURNAL OF CIVIL ENGINEERING, 2021, 25 (05) : 1849 - 1856
  • [9] Constant Quasi-zero Stiffness Ultra-low Frequency Vibration Isolator Design Based on Negative Stiffness Mechanism Composed of Oblique Bars and Tension Spring
    Zhao, Feng
    Qin, Pu
    Du, Wenliao
    Wang, Caidong
    Cao, Shuqian
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2024, 60 (17): : 223 - 234
  • [10] A quasi-zero adjustable stiffness magnetoelectric generator of an inverted pendulum for ultra-low frequency blue energy harvesting
    Zhang, Boyang
    Guo, Hengyu
    Ding, Jiheng
    Luo, Jun
    Wang, Min
    Sun, Yi
    Pu, Huayan
    NANO ENERGY, 2023, 112