Data-driven learning methods for industrial robot stiffness model identification

被引:0
|
作者
Smart Manufacturing System R&D Department, Korea Institute of Industrial Technology , Korea, Republic of [1 ]
机构
关键词
Engineering Village;
D O I
23rd International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN 2023
中图分类号
学科分类号
摘要
Compensation algorithm - Compliance model - Data driven - Learning methods - Machine-learning - Machining systems - Robotic machining - Robots manipulators - Stiffness modeling - Virtual joints
引用
收藏
相关论文
共 50 条
  • [31] Data-driven System Identification of an Innovation Community Model
    Olcay, Ertug
    Dengler, Christian
    Lohmann, Boris
    IFAC PAPERSONLINE, 2018, 51 (11): : 1269 - 1274
  • [32] Data-Driven Dynamic Model Identification for Synchronous Generators
    Wang, Zhengyu
    Fan, Tingling
    Miao, Zhixin
    2019 51ST NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2019,
  • [33] Data-Driven Methods for Voltage Regulator Identification and Tap Estimation
    Yusuf, Jubair
    Azzolini, Joseph A.
    Reno, Matthew J.
    2022 IEEE KANSAS POWER AND ENERGY CONFERENCE (KPEC 2022), 2022,
  • [34] Review of Industrial Robot Stiffness Identification and Modelling
    Wu, Kai
    Li, Jiaquan
    Zhao, Huan
    Zhong, Yong
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [35] Data-Driven Soft Sensor Model Based on Deep Learning for Quality Prediction of Industrial Processes
    Zhu X.
    Rehman K.U.
    Bo W.
    Shahzad M.
    Hassan A.
    SN Computer Science, 2021, 2 (1)
  • [36] Methods for data-driven multiscale model discovery for materials
    Brunton, Steven L.
    Kutz, J. Nathan
    JOURNAL OF PHYSICS-MATERIALS, 2019, 2 (04):
  • [37] Data-driven Methods for Damage Detection and Identification of UAV: A Review
    Ma, Yumeng
    Mustapha, F.
    Ishak, M. R.
    Rahim, Sharafiz Abdul
    Mustapha, Mazli
    JOURNAL OF AERONAUTICS ASTRONAUTICS AND AVIATION, 2022, 54 (04): : 405 - 420
  • [38] On the use of machine learning methods to predict component reliability from data-driven industrial case studies
    Emanuel F. Alsina
    Manuel Chica
    Krzysztof Trawiński
    Alberto Regattieri
    The International Journal of Advanced Manufacturing Technology, 2018, 94 : 2419 - 2433
  • [39] On the use of machine learning methods to predict component reliability from data-driven industrial case studies
    Alsina, Emanuel F.
    Chica, Manuel
    Trawinski, Krzysztof
    Regattieri, Alberto
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 94 (5-8): : 2419 - 2433
  • [40] A Data-driven Estimation Model for Industrial Demand Flexibility Potential
    Baek, Keon
    Baek, Jun
    Ko, Kabseok
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2025,