Effect of the sintering temperature on microstructure and optical properties of reactive sintered YAG:Sm3+ ceramics

被引:0
作者
Timoshenko A.D. [1 ]
Doroshenko A.G. [1 ]
Parkhomenko S.V. [1 ]
Vorona I.O. [1 ]
Kryzhanovska O.S. [1 ]
Safronova N.A. [1 ]
Vovk O.O. [1 ]
Tolmachev V. [1 ]
Baumer V.N. [1 ,2 ]
Matolínová I. [3 ]
Yavetskiy R.P. [1 ]
机构
[1] Institute for Single Crystals, NAS of Ukraine, 60 Nauky Ave., Kharkiv
[2] SSI “Institute for Single Crystals”, NAS of Ukraine, 60 Nauky Ave., Kharkiv
[3] Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, Prague
来源
Optical Materials: X | 2022年 / 13卷
关键词
Absorption coefficient; Grain size; Optical properties; Reactive sintering; YAG:Sm[!sup]3+[!/sup] ceramics;
D O I
10.1016/j.omx.2021.100131
中图分类号
学科分类号
摘要
YAG:Sm3+ (5 аt.%) optical ceramics were obtained by the solid-state reactive sintering in the 1700–1800°C temperature range. The effect of the sintering temperature on the microstructure, phase composition and optical properties of YAG:Sm3+ ceramics has been studied. It has been shown that the optimal sintering temperature in order to produce YAG:Sm3+ transparent ceramics is 1725°С. The sintered ceramics are characterized by high optical transmittance (>82% at 808 nm), low residual porosity and the average grain size of 21 μm. It has been shown that the sintering temperature has a little effect on the average grain size of synthesized ceramics. Microstructure of YAG:Sm3+ ceramics consolidated at 1800°C is characterized by the presence of large grains up to 90 μm surrounded by the main fraction with an average grain size of 19 μm, which could be evidence of starting bimodal grain size distribution. © 2021 The Author(s)
引用
收藏
相关论文
共 32 条
[1]  
Ikesue A., Kinoshita T., Kamata K., Yoshida K., Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers, J. Am. Ceram. Soc., 78, pp. 1033-1040, (1995)
[2]  
Springer R.M., Thomas M.E., Analysis and comparison of single crystal and polycrystalline Nd:YAG, absorption, IEEE J. Quant. Electron., 49, pp. 667-676, (2013)
[3]  
Springer R.M., Thomas M.E., Joseph R.I., Analysis and comparison of single-crystal and polycrystalline Nd:YAG, Scatter, IEEE J. Quant. Electron., 51, (2015)
[4]  
Yagi H., Yanagitani T., Numazawa T., Ueda K., The physical properties of transparent Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>: elastic modulus at high temperature and thermal conductivity at low temperature, Ceram. Int., 33, pp. 711-714, (2007)
[5]  
Furuse H., Yasuhara R., Hiraga K., Thermo-optic properties of ceramic YAG at high temperatures, Opt. Mater. Express, 4, pp. 1794-1799, (2014)
[6]  
Yasuhara R., Furuse H., Iwamoto A., Kawanaka J., Yanagitani T., Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics, Opt Express, 20, pp. 29531-29539, (2012)
[7]  
Taira T., Re<sup>3+</sup>-ion doped YAG ceramic lasers, IEEE J. Sel. Top. Quant. Electron., 13, pp. 798-809, (2007)
[8]  
Ikesue A., Aung Y.L., Ceramic laser materials, Nat. Photonics, 2, pp. 721-727, (2008)
[9]  
Yagi H., Bisson J.F., Ueda K., Yanagitani T., Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers, J. Lumin., 121, pp. 88-94, (2006)
[10]  
Huss R., Wilhelm R., Kolleck C., Neumann J., Kracht D., Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding, Opt Express, 18, pp. 13094-13101, (2010)