High energy storage density realized in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics at ultralow sintering temperature

被引:0
作者
Zhang F. [1 ]
Qiao X. [1 ]
Shi Q. [1 ]
Chao X. [1 ]
Yang Z. [1 ]
Wu D. [1 ]
机构
[1] Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an,
来源
Yang, Zupei (yangzp@snnu.edu.cn) | 1600年 / Elsevier Ltd卷 / 41期
基金
中国国家自然科学基金;
关键词
BNT; Energy storage; Lead-free ceramics; Low sintering temperature;
D O I
10.1016/j.jeurceramsoc.2020.07.067
中图分类号
学科分类号
摘要
The miniaturization and integration trend of electronic applications requires high energy storage performance, and the development of multilayer ceramic capacitors (MLCC) demands the compatibility between ceramic sintering temperature and co-firing temperature of metal electrodes. Herein, we obtained a high recoverable energy storage density and a low sintering temperature simultaneously in 0.5(Bi0.5Na0.5)TiO3-0.5SrTiO3-x mol% CuO (0.5BNT-0.5ST-x mol% CuO) via the combination of adding CuO sintering aid and citrate sol-gel synthesis method. The optimum sintering temperature decreases significantly from 1130 °C for x = 0 to 820 °C for x = 2.0. The ceramic of 0.5BNT-0.5ST-1.5 mol% CuO exhibits a large Wrec of 2.20 J/cm3 and η of 72.39% under 230 kV/cm. Furthermore, the same sample also possesses a large CD of 1740.97 A/cm2, an extremely high PD of 139.28 MW/cm3 and an ultrafast discharge speed of 82 ns. These merits reveal that the ceramic of 0.5BNT-0.5ST-1.5 mol% CuO has great potential in practical MLCC production. © 2020 Elsevier Ltd
引用
收藏
页码:368 / 375
页数:7
相关论文
共 59 条
[1]  
Gur T.M., Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage, Energy Environ. Sci., 11, 10, pp. 2696-2767, (2018)
[2]  
Kuang Y., Zhang Y., Zhou B., Li C., Cao Y., Li L., Zeng L., A review of renewable energy utilization in islands, Renew. Sust. Energ. Rev., 59, pp. 504-513, (2016)
[3]  
Li Q., Han K., Gadinski M.R., Zhang G., Wang Q., High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites, Adv. Mater., 26, 36, pp. 6244-6249, (2014)
[4]  
Whittingham M.S., Materials challenges facing electrical energy storage, Mrs Bulletin, 33, 4, pp. 411-419, (2008)
[5]  
Chu B., Zhou X., Ren K., Neese B., Lin M., Wang Q., Bauer F., Zhang Q., A dielectric polymer with high electric energy density and fast discharge speed, Science, 313, 5785, pp. 334-336, (2006)
[6]  
Xie B., Zhang Q., Zhang L., Zhu Y., Guo X., Fan P., Zhang H., Ultrahigh discharged energy density in polymer nanocomposites by designing linear/ferroelectric bilayer heterostructure, Nano Energy, 54, pp. 437-446, (2018)
[7]  
Wang T., Jin L., Li C., Hu Q., Wei X., Relaxor ferroelectric BaTiO<sub>3</sub>-Bi (Mg<sub>2/3</sub>Nb<sub>1/3</sub>)O<sub>3</sub> ceramics for energy storage application, J. Am. Ceram. Soc., 98, 2, pp. 559-566, (2015)
[8]  
Hao X., A review on the dielectric materials for high energy-storage application, J. Adv. Dielectr., 3, 1, (2013)
[9]  
Yao Z., Song Z., Hao H., Yu Z., Cao M., Zhang S., Lanagan M.T., Liu H., Homogeneous/inhomogeneous‐structured dielectrics and their energy-storage performances, Adv. Mater., 29, 20, (2017)
[10]  
Bhattacharya S.K., Tummala R.R., Next generation integral passives: materials, processes, and integration of resistors and capacitors on PWB substrates, J. Mater. Sci-Mater. El., 11, 3, pp. 253-268, (2000)