Biomimetic Surface Texturing with Tunable Stimulus-Responsive Friction Anisotropy

被引:1
|
作者
Hossain, Khan Rajib [1 ,2 ]
Zheng, Yuanhua [3 ]
Yao, Xinle [1 ,4 ]
Hu, Haiyuan [1 ]
Ji, Zhongying [1 ]
Wang, Xiaolong [1 ,2 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100039, Peoples R China
[3] Gansu Prov Hosp, Dept Orthodont, Lanzhou 730000, Peoples R China
[4] Shihezi Univ, Sch Chem & Chem Engn, Key Lab Mat Oriented Chem Engn Xinjiang Uygur Aut, Shihezi 832003, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Biomimetic surface; Stimuli-responsive; Friction anisotropy; 3D printing; Coefficient of friction; OXYGEN PLASMA TREATMENT;
D O I
10.1007/s42235-024-00595-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Micro- and nano-structures are intentionally incorporated into various biological surfaces, such as fish scales, snakeskin, and burr-covered plant leaves, to enhance their interactions with other surfaces. The mechanical anisotropy affects friction, interlocking, propulsion, and mobility on substrates. This study investigates a novel method for developing a robust, stratified, soft, lubricating coating on a surface. 3-Methacryloyloxypropyl-trimethoxysilane (MPS) is a cohesive adhesion promoter that functions by infiltrating Polydimethylsiloxane (PDMS) silicone elastomers to maintain low friction levels and high mechanical load-bearing capacity. MPS makes it easier for organic and inorganic materials to adhere to the surface of the initiator layer P(AAm-co-AA-co-PDMS/Fe). We investigate how the tough hydrogel layer of the module impacts the lubricating ability of the multilayer coating when the tough hydrogel layer of the module adheres to the bio-based polyurethane substrate. After 1,000 sliding cycles with a 1 N load, the improved PDMS's Coefficient of Friction (COF) remains steady and low (COF<0.81). We recommend using the suggested structure and a standard set of optimal variables to enhance the functional efficiency of such systems. In conclusion, we have demonstrated the optimal simulation of these parameters for stimulus-responsive, adjustable surface systems.
引用
收藏
页码:2942 / 2954
页数:13
相关论文
共 50 条
  • [21] Progress in Stimulus-Responsive Dendritic Gels
    Liu, Zhixiong
    Chu, Qingkai
    Feng, Yu
    ACTA CHIMICA SINICA, 2022, 80 (10) : 1424 - 1435
  • [22] Stimulus-responsive liposomes for biomedical applications
    Antoniou, Antonia, I
    Giofre, Sabrina
    Seneci, Pierfausto
    Passarella, Daniele
    Pellegrino, Sara
    DRUG DISCOVERY TODAY, 2021, 26 (08) : 1794 - 1824
  • [23] Supramolecular Vesicles for Stimulus-Responsive DrugDelivery
    Xing, Pengyao
    Zhao, Yanli
    SMALL METHODS, 2018, 2 (04):
  • [24] Stimulus-Responsive Biopolymeric Surface: Molecular Switches for Oil/Water Separation
    Kollarigowda, Ravichandran H.
    Bhyrappa, Harisha Mysore
    Cheng, Gang
    ACS APPLIED BIO MATERIALS, 2019, 2 (10): : 4249 - 4257
  • [25] Stimulus-responsive mesoporous silica particles
    Nadrah, Peter
    Planinsek, Odon
    Gaberscek, Miran
    JOURNAL OF MATERIALS SCIENCE, 2014, 49 (02) : 481 - 495
  • [26] Permeability control in stimulus-responsive colloidosomes
    Miguel, Adriana San
    Behrens, Sven H.
    SOFT MATTER, 2011, 7 (05) : 1948 - 1956
  • [27] Permeability control in stimulus-responsive colloidosomes
    San Miguel, Adriana
    Behrens, Sven H.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [28] Stimulus-responsive assembly of nonviral nucleocapsids
    Hori, Mao
    Steinauer, Angela
    Tetter, Stephan
    Haelg, Jamiro
    Manz, Eva-Maria
    Hilvert, Donald
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [29] Stimulus-responsive mesoporous silica particles
    Peter Nadrah
    Odon Planinšek
    Miran Gaberšček
    Journal of Materials Science, 2014, 49 : 481 - 495
  • [30] Stimulus-Responsive Macromolecules in Polymeric Coatings
    Liu, Qianhui
    Urban, Marek W.
    POLYMER REVIEWS, 2023, 63 (02) : 289 - 323