Biomimetic Surface Texturing with Tunable Stimulus-Responsive Friction Anisotropy

被引:1
|
作者
Hossain, Khan Rajib [1 ,2 ]
Zheng, Yuanhua [3 ]
Yao, Xinle [1 ,4 ]
Hu, Haiyuan [1 ]
Ji, Zhongying [1 ]
Wang, Xiaolong [1 ,2 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100039, Peoples R China
[3] Gansu Prov Hosp, Dept Orthodont, Lanzhou 730000, Peoples R China
[4] Shihezi Univ, Sch Chem & Chem Engn, Key Lab Mat Oriented Chem Engn Xinjiang Uygur Aut, Shihezi 832003, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Biomimetic surface; Stimuli-responsive; Friction anisotropy; 3D printing; Coefficient of friction; OXYGEN PLASMA TREATMENT;
D O I
10.1007/s42235-024-00595-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Micro- and nano-structures are intentionally incorporated into various biological surfaces, such as fish scales, snakeskin, and burr-covered plant leaves, to enhance their interactions with other surfaces. The mechanical anisotropy affects friction, interlocking, propulsion, and mobility on substrates. This study investigates a novel method for developing a robust, stratified, soft, lubricating coating on a surface. 3-Methacryloyloxypropyl-trimethoxysilane (MPS) is a cohesive adhesion promoter that functions by infiltrating Polydimethylsiloxane (PDMS) silicone elastomers to maintain low friction levels and high mechanical load-bearing capacity. MPS makes it easier for organic and inorganic materials to adhere to the surface of the initiator layer P(AAm-co-AA-co-PDMS/Fe). We investigate how the tough hydrogel layer of the module impacts the lubricating ability of the multilayer coating when the tough hydrogel layer of the module adheres to the bio-based polyurethane substrate. After 1,000 sliding cycles with a 1 N load, the improved PDMS's Coefficient of Friction (COF) remains steady and low (COF<0.81). We recommend using the suggested structure and a standard set of optimal variables to enhance the functional efficiency of such systems. In conclusion, we have demonstrated the optimal simulation of these parameters for stimulus-responsive, adjustable surface systems.
引用
收藏
页码:2942 / 2954
页数:13
相关论文
共 50 条
  • [1] Tunable stimulus-responsive friction mechanisms of polyelectrolyte films and tube forests
    Han, Lin
    Yin, Jie
    Wang, Lifeng
    Chia, Khek-Khiang
    Cohen, Robert E.
    Rubner, Michael F.
    Ortiz, Christine
    Boyce, Mary C.
    SOFT MATTER, 2012, 8 (33) : 8642 - 8650
  • [2] Switchable friction of stimulus-responsive hydrogels
    Chang, Debby P.
    Dolbow, John E.
    Zauscher, Stefan
    LANGMUIR, 2007, 23 (01) : 250 - 257
  • [3] Biomimetic stimulus-responsive star diblock gelators
    Li, YT
    Tang, YQ
    Narain, R
    Lewis, AL
    Armes, SP
    LANGMUIR, 2005, 21 (22) : 9946 - 9954
  • [4] POLY 101-Switchable friction of stimulus-responsive hydrogels
    Chang, Debby P.
    Dolbow, John E.
    Zauscher, Stefan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 232
  • [5] Stimulus-responsive microgels
    Kokufuta, E
    SEN-I GAKKAISHI, 2004, 60 (07) : P386 - P390
  • [6] Stimulus-responsive polymers
    Roth, Peter J.
    Lowe, Andrew B.
    POLYMER CHEMISTRY, 2017, 8 (01) : 10 - 11
  • [7] Stimulus-responsive Nanomedicine
    An, Fei-Fei
    Shi, Xiangyang
    CURRENT NANOSCIENCE, 2016, 12 (01) : 3 - 3
  • [8] Reduction of Surface Hydrophobicity Using a Stimulus-Responsive Polysaccharide
    Sedeva, Liana G.
    Fornasiero, Daniel
    Ralston, John
    Beattie, David A.
    LANGMUIR, 2010, 26 (20) : 15865 - 15874
  • [9] Nanogel-based stimulus-responsive capsules with tunable wall permeability
    Pich, Andrij
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [10] A novel electric stimulus-responsive micro-actuator for powerful biomimetic motions
    Yun, Ruide
    Che, Jingyu
    Liu, Zhiwei
    Yan, Xiaojun
    Qi, Mingjing
    NANOSCALE, 2023, 15 (31) : 12933 - 12943