SparseDet: A Simple and Effective Framework for Fully Sparse LiDAR-Based 3-D Object Detection

被引:1
作者
Liu, Lin [1 ]
Song, Ziying [1 ]
Xia, Qiming [2 ]
Jia, Feiyang [1 ]
Jia, Caiyan [1 ]
Yang, Lei [3 ,4 ]
Gong, Yan [5 ]
Pan, Hongyu [6 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp Sci & Technol, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China
[2] Xiamen Univ, Fujian Key Lab Sensing & Comp Smart Cities, Xiamen 361005, Fujian, Peoples R China
[3] Tsinghua Univ, State Key Lab Intelligent Green Vehicle & Mobil, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
[5] JD Logist, Autonomous Driving Dept X Div, Beijing 101111, Peoples R China
[6] Horizon Robot, Beijing 100190, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Feature extraction; Three-dimensional displays; Point cloud compression; Detectors; Aggregates; Object detection; Computational efficiency; 3-D object detection; feature aggregation; sparse detectors;
D O I
10.1109/TGRS.2024.3468394
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
LiDAR-based sparse 3-D object detection plays a crucial role in autonomous driving applications due to its computational efficiency advantages. Existing methods either use the features of a single central voxel as an object proxy or treat an aggregated cluster of foreground points as an object proxy. However, the former cannot aggregate contextual information, resulting in insufficient information expression in object proxies. The latter relies on multistage pipelines and auxiliary tasks, which reduce the inference speed. To maintain the efficiency of the sparse framework while fully aggregating contextual information, in this work, we propose SparseDet that designs sparse queries as object proxies. It introduces two key modules: the local multiscale feature aggregation (LMFA) module and the global feature aggregation (GFA) module, aiming to fully capture the contextual information, thereby enhancing the ability of the proxies to represent objects. The LMFA module achieves feature fusion across different scales for sparse key voxels via coordinate transformations and using nearest neighbor relationships to capture object-level details and local contextual information, whereas the GFA module uses self-attention mechanisms to selectively aggregate the features of the key voxels across the entire scene for capturing scene-level contextual information. Experiments on nuScenes and KITTI demonstrate the effectiveness of our method. Specifically, SparseDet surpasses the previous best sparse detector VoxelNeXt (a typical method using voxels as object proxies) by 2.2% mean average precision (mAP) with 13.5 frames/s on nuScenes and outperforms VoxelNeXt by 1.12% AP(3-D) on hard level tasks with 17.9 frames/s on KITTI. What is more, not only the mAP of SparseDet exceeds that of FSDV2 (a classical method using clusters of foreground points as object proxies) but also its inference speed is 1.3 times faster than FSDV2 on the nuScenes test set. The code has been released in https://github.com/liulin813/SparseDet.git.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Point Transformer-Based Salient Object Detection Network for 3-D Measurement Point Clouds
    Wei, Zeyong
    Chen, Baian
    Wang, Weiming
    Chen, Honghua
    Wei, Mingqiang
    Li, Jonathan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 11
  • [42] A Multi-Modal Fusion-Based 3D Multi-Object Tracking Framework With Joint Detection
    Wang, Xiyang
    Fu, Chunyun
    He, Jiawei
    Huang, Mingguang
    Meng, Ting
    Zhang, Siyu
    Zhou, Hangning
    Xu, Ziyao
    Zhang, Chi
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (01): : 532 - 539
  • [43] D-S Augmentation: Density-Semantics Augmentation for 3-D Object Detection
    Liu, Zhiqiang
    Shi, Peicheng
    Qi, Heng
    Yang, Aixi
    IEEE SENSORS JOURNAL, 2023, 23 (03) : 2760 - 2772
  • [44] RS-Aug: Improve 3D Object Detection on LiDAR With Realistic Simulator Based Data Augmentation
    An, Pei
    Liang, Junxiong
    Ma, Jie
    Chen, Yanfei
    Wang, Liheng
    Yang, You
    Liu, Qiong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (09) : 10165 - 10176
  • [45] SparseDet: Towards End-to-End 3D Object Detection
    Han, Jianhong
    Wan, Zhaoyi
    Liu, Zhe
    Feng, Jie
    Zhou, Bingfeng
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 781 - 792
  • [46] Cross-Supervised LiDAR-Camera Fusion for 3D Object Detection
    Zuo, Chao Jie
    Gu, Cao Yu
    Guo, Yi Kun
    Miao, Xiao Dong
    IEEE ACCESS, 2025, 13 : 10447 - 10458
  • [47] ARFA: Adaptive Reception Field Aggregation for 3-D Detection From LiDAR Point Cloud
    Zhang, Diankun
    Wang, Xueqing
    Zheng, Zhijie
    Liu, Xiaojun
    Fang, Guangyou
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 11156 - 11167
  • [48] 3-D Objects Detection and Tracking Using Solid-State LiDAR and RGB Camera
    Peng, Zheng
    Xiong, Zhi
    Zhao, Yao
    Zhang, Ling
    IEEE SENSORS JOURNAL, 2023, 23 (13) : 14795 - 14808
  • [49] Unsupervised Domain Adaptive 3-D Detection With Data Adaption From LiDAR Point Cloud
    Zhang, Diankun
    Wang, Xueqing
    Zheng, Zhijie
    Liu, Xiaojun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [50] SOFW: A Synergistic Optimization Framework for Indoor 3D Object Detection
    Dai, Kun
    Jiang, Zhiqiang
    Xie, Tao
    Wang, Ke
    Liu, Dedong
    Fan, Zhendong
    Li, Ruifeng
    Zhao, Lijun
    Omar, Mohamed
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 637 - 651