SparseDet: A Simple and Effective Framework for Fully Sparse LiDAR-Based 3-D Object Detection

被引:1
作者
Liu, Lin [1 ]
Song, Ziying [1 ]
Xia, Qiming [2 ]
Jia, Feiyang [1 ]
Jia, Caiyan [1 ]
Yang, Lei [3 ,4 ]
Gong, Yan [5 ]
Pan, Hongyu [6 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp Sci & Technol, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China
[2] Xiamen Univ, Fujian Key Lab Sensing & Comp Smart Cities, Xiamen 361005, Fujian, Peoples R China
[3] Tsinghua Univ, State Key Lab Intelligent Green Vehicle & Mobil, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
[5] JD Logist, Autonomous Driving Dept X Div, Beijing 101111, Peoples R China
[6] Horizon Robot, Beijing 100190, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Feature extraction; Three-dimensional displays; Point cloud compression; Detectors; Aggregates; Object detection; Computational efficiency; 3-D object detection; feature aggregation; sparse detectors;
D O I
10.1109/TGRS.2024.3468394
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
LiDAR-based sparse 3-D object detection plays a crucial role in autonomous driving applications due to its computational efficiency advantages. Existing methods either use the features of a single central voxel as an object proxy or treat an aggregated cluster of foreground points as an object proxy. However, the former cannot aggregate contextual information, resulting in insufficient information expression in object proxies. The latter relies on multistage pipelines and auxiliary tasks, which reduce the inference speed. To maintain the efficiency of the sparse framework while fully aggregating contextual information, in this work, we propose SparseDet that designs sparse queries as object proxies. It introduces two key modules: the local multiscale feature aggregation (LMFA) module and the global feature aggregation (GFA) module, aiming to fully capture the contextual information, thereby enhancing the ability of the proxies to represent objects. The LMFA module achieves feature fusion across different scales for sparse key voxels via coordinate transformations and using nearest neighbor relationships to capture object-level details and local contextual information, whereas the GFA module uses self-attention mechanisms to selectively aggregate the features of the key voxels across the entire scene for capturing scene-level contextual information. Experiments on nuScenes and KITTI demonstrate the effectiveness of our method. Specifically, SparseDet surpasses the previous best sparse detector VoxelNeXt (a typical method using voxels as object proxies) by 2.2% mean average precision (mAP) with 13.5 frames/s on nuScenes and outperforms VoxelNeXt by 1.12% AP(3-D) on hard level tasks with 17.9 frames/s on KITTI. What is more, not only the mAP of SparseDet exceeds that of FSDV2 (a classical method using clusters of foreground points as object proxies) but also its inference speed is 1.3 times faster than FSDV2 on the nuScenes test set. The code has been released in https://github.com/liulin813/SparseDet.git.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Diversity Knowledge Distillation for LiDAR-Based 3-D Object Detection
    Ning, Kanglin
    Liu, Yanfei
    Su, Yanzhao
    Jiang, Ke
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 11181 - 11193
  • [2] On Onboard LiDAR-Based Flying Object Detection
    Vrba, Matous
    Walter, Viktor
    Pritzl, Vaclav
    Pliska, Michal
    Baca, Tomas
    Spurny, Vojtech
    Hert, Daniel
    Saska, Martin
    IEEE TRANSACTIONS ON ROBOTICS, 2025, 41 : 593 - 611
  • [3] Fully Sparse Fusion for 3D Object Detection
    Li, Yingyan
    Fan, Lue
    Liu, Yang
    Huang, Zehao
    Chen, Yuntao
    Wang, Naiyan
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (11) : 7217 - 7231
  • [4] SCDA-Net: Structure Completion and Density Awareness Network for LiDAR-Based 3D Object Detection
    Wu, Shuwen
    Yang, Jinfu
    Ma, Jiaqi
    Zhang, Shaochen
    Hao, Tianhao
    Li, Mingai
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (05): : 4268 - 4275
  • [5] DSAV: A Deep Sparse Acceleration Framework for Voxel-Based 3-D Object Detection
    Fang, Haining
    Tan, Yujuan
    Ren, Ao
    Zhuang, Wei
    Hua, Yang
    Qin, Zhiyong
    Liu, Duo
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2025, 44 (02) : 613 - 626
  • [6] Adversarial Obstacle Generation Against LiDAR-Based 3D Object Detection
    Wang, Jian
    Li, Fan
    Zhang, Xuchong
    Sun, Hongbin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2686 - 2699
  • [7] LiDAR-Based 3-D Glass Detection and Reconstruction in Indoor Environment
    Zhou, Lelai
    Sun, Xiaohui
    Zhang, Chen
    Cao, Luyang
    Li, Yibin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [8] TransMRE: Multiple Observation Planes Representation Encoding With Fully Sparse Voxel Transformers for 3-D Object Detection
    Zhu, Ziming
    Zhu, Yu
    Zhang, Kezhi
    Li, Hangyu
    Ling, Xiaofeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [9] Multi-modal information fusion for LiDAR-based 3D object detection framework
    Ma, Ruixin
    Yin, Yong
    Chen, Jing
    Chang, Rihao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 7995 - 8012
  • [10] Multi-modal information fusion for LiDAR-based 3D object detection framework
    Ruixin Ma
    Yong Yin
    Jing Chen
    Rihao Chang
    Multimedia Tools and Applications, 2024, 83 : 7995 - 8012