Molecular dynamics simulation of methane gas flow in nanopores

被引:20
|
作者
Zhang J. [1 ]
Pei G. [1 ,2 ]
Zhang L. [3 ]
机构
[1] School of Civil Engineering and Architecture, Southwest Petroleum University
[2] School of Architectural Economics and Engineering Management, Hubei Business College
[3] Chengdu Highway Construction & Development Co., Ltd
关键词
Carbon nanopore; Molecular dynamics; Numerical simulation; Shale gas; Transport property;
D O I
10.1016/j.petlm.2018.12.008
中图分类号
学科分类号
摘要
The transport properties of fluids in nanopores are a fundamental scientific issue in the development of tight reservoirs such as shale gas. The flow of gas in nanosized pores is affected by a size effect, therefore, the conventional fluid mechanics theory cannot be applied. Based on the molecular dynamics theory, the transport process of methane in carbon nanopores was studied, including simulation of the arrangement of the wall atoms, slip and transitional flow of methane in the supercritical state and application of different driving forces. The research of this paper revealed that the configuration of the wall carbon atoms, at the microscale, has a greater influence on the density distribution and velocity distribution of methane molecules in the pores, while the change in the driving force has a greater impact on the slippage of methane at the boundary. Particularly, the theoretical model we proposed can predict the transport properties in carbon nanopores, demonstrating the sensitivity of driving force, pore configuration and the state of flow for methane gas transport, which can provide the characteristic parameters for the establishment of the seepage mathematical model. © 2019 Southwest Petroleum University
引用
收藏
页码:252 / 259
页数:7
相关论文
共 50 条
  • [21] Rarefied gas flow in rough microchannels by molecular dynamics simulation
    Cao, BY
    Chen, M
    Guo, ZY
    CHINESE PHYSICS LETTERS, 2004, 21 (09) : 1777 - 1779
  • [22] Molecular Dynamics Simulation of the Crystal Nucleation and Growth Behavior of Methane Hydrate in the Presence of the Surface and Nanopores of Porous Sediment
    Yan, Ke-Feng
    Li, Xiao-Sen
    Chen, Zhao-Yang
    Xia, Zhi-Ming
    Xu, Chun-Gang
    Zhang, Zhiqiang
    LANGMUIR, 2016, 32 (31) : 7975 - 7984
  • [23] Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation
    Horsch, M.
    Vrabec, J.
    Bernreuther, M.
    Hasse, H.
    TURBULENCE, HEAT AND MASS TRANSFER 6, 2009, : 89 - 92
  • [24] Molecular Simulation of Shale Gas Adsorption and Diffusion in Clay Nanopores
    Sui, Hongguang
    Yao, Jun
    Zhang, Lei
    COMPUTATION, 2015, 3 (04) : 687 - 700
  • [25] Molecular simulation of gas adsorption in shale nanopores: A critical review
    Wang, Tianyu
    Tian, Shouceng
    Li, Gensheng
    Zhang, Liyuan
    Sheng, Mao
    Ren, Wenxi
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 149
  • [26] Molecular simulation of shale gas adsorption and diffusion in inorganic nanopores
    Sharma, Aman
    Namsani, Sadanandam
    Singh, Jayant K.
    MOLECULAR SIMULATION, 2015, 41 (5-6) : 414 - 422
  • [27] Molecular dynamics simulations of shale gas transport in rough nanopores
    Zhao, Yulong
    Luo, Mingyao
    Liu, Lingfu
    Wu, Jianfa
    Chen, Man
    Zhang, Liehui
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 217
  • [28] Molecular simulation of gas adsorption in realistic models of silica nanopores
    Coasne, B
    Hung, FR
    Siperstein, FR
    Gubbins, KE
    ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 2005, 30 (04): : 375 - 383
  • [29] Oil diffusion in shale nanopores: Insight of molecular dynamics simulation
    Zhang, Wei
    Feng, Qihong
    Wang, Sen
    Xing, Xiangdong
    JOURNAL OF MOLECULAR LIQUIDS, 2019, 290
  • [30] Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores
    Belkin, Maxim
    Aksimentiev, Aleksei
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (20) : 12599 - 12608