Vibration of a Euler-Bernoulli uniform beam carrying a rigid body at each end

被引:3
|
作者
Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand [1 ]
机构
[1] Department of Mechanical Engineering, University of Canterbury, Christchurch
来源
Int. J. Mech. Eng. Educ. | 2006年 / 3卷 / 194-210期
关键词
Euler-Bernoulli beam; Rigid body at each end; Vibration;
D O I
10.7227/IJMEE.34.3.2
中图分类号
学科分类号
摘要
Publications on the vibration of a Euler-Bernoulli beam carrying thin discs at the ends are available. In this paper the thin discs are replaced with rigid bodies, whose axial width is included in the analysis. The centre of mass of the bodies is assumed to be on the beam axis but away from the beam end. Among the boundary conditions considered are: the classical clamped, pinned, sliding of free; the lateral translation and rotation of an unrestrained rigid body; the translation and/or rotation of a restrained rigid body, and other special cases. The frequency equations and the first three frequency parameters are tabulated for several sets of the system parameters and selected combinations of 10 boundary conditions.
引用
收藏
页码:194 / 210
页数:16
相关论文
共 50 条
  • [21] Adaptive Vibration Iterative Learning Control of an Euler-Bernoulli Beam System With Input Saturation
    Feng, Yanghe
    Liu, Zhong
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (04): : 2469 - 2477
  • [22] Free Vibration of Non-Uniform Euler-Bernoulli Beams by the Adomian Modified Decomposition Method
    Lai, Hsin-Yi
    Chen, C. K.
    Hsu, Jung-Chang
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 34 (01): : 87 - 115
  • [23] Non-linear vibration of Euler-Bernoulli beams
    Barari, A.
    Kaliji, H. D.
    Ghadimi, M.
    Domairry, G.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2011, 8 (02): : 139 - 148
  • [24] Analytical Approximation of Nonlinear Vibration of Euler-Bernoulli Beams
    Jafari, S. S.
    Rashidi, M. M.
    Johnson, S.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2016, 13 (07): : 1250 - 1264
  • [25] Loaded Euler-Bernoulli beam with the distributed hysteresis properties
    Karpov, Evgeny
    Semenov, Mikhail
    Meleshenko, Peter
    JOURNAL OF VIBRATION AND CONTROL, 2024, 30 (19-20) : 4510 - 4524
  • [26] Model Order Reduction of Nonlinear Euler-Bernoulli Beam
    Ilbeigi, Shahab
    Chelidze, David
    NONLINEAR DYNAMICS, VOL 1, 2017, : 377 - 385
  • [27] Artificial boundary conditions for Euler-Bernoulli beam equation
    Tang, Shao-Qiang
    Karpov, Eduard G.
    ACTA MECHANICA SINICA, 2014, 30 (05) : 687 - 692
  • [28] Fractional visco-elastic Euler-Bernoulli beam
    Di Paola, M.
    Heuer, R.
    Pirrotta, A.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (22-23) : 3505 - 3510
  • [29] Response of an Euler-Bernoulli beam subject to a stochastic disturbance
    Olawale, Lukman
    Gao, Tao
    George, Erwin
    Lai, Choi-Hong
    ENGINEERING WITH COMPUTERS, 2023, 39 (06) : 4185 - 4197
  • [30] Artificial boundary conditions for Euler-Bernoulli beam equation
    Shao-Qiang Tang
    Eduard G. Karpov
    Acta Mechanica Sinica, 2014, 30 : 687 - 692