A midway charging strategy for electric vehicles based on Stackelberg game considering fair charging

被引:0
作者
Wang, Xiaocheng [1 ,2 ]
Li, Zelong [1 ]
Han, Qiaoni [2 ,3 ]
Sun, Pengjiao [1 ]
机构
[1] Tianjin Normal Univ, Coll Elect & Commun Engn, Tianjin Key Lab Wireless Mobile Commun & Power Tra, Tianjin, Peoples R China
[2] Shanghai Jiao Tong Univ, Key Lab Syst Control & Informat Proc, Minist Educ, Shanghai, Peoples R China
[3] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Charging station; Electric vehicle; Midway charging; Fair charging; Stackelberg game; BEHAVIOR; STATION; MODEL;
D O I
10.1016/j.segan.2024.101590
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the rapid development of the electric vehicle industry, there are games about charging between electric vehicles (EVs) and charging stations (CSs) that have been extensively studied. Due to the mileage problem that EVs still have, this paper addresses the charging interactions between EVs and CSs in a midway charging scenario. Firstly, in the information exchange process with the involvement of navigation system, each EV chooses under the influence of the pricing strategy of CSs to minimize the expenditure after considering factors including distance and road conditions. After getting EVs' strategy, CSs will adjust the charging strategy to maximize the revenue while obtaining the minimum load factor. Then, we use a Stackelberg game with multi-leader and multi-follower to model the interaction between CSs and EVs. Moreover, considering the particularity of midway charging, we add fair charging to limit the charging capacity of EVs. Lastly, to address the Stackelberg equilibrium problem, the backward induction method is adopted, that is, we derive the charging capacity strategies of EVs (i.e., followers) given the charging price of CSs (i.e., leaders), and then design the optimal pricing strategy of CSs based on the EVs' optimal strategy. Besides, a distributed algorithm is also proposed to obtain the game equilibrium iteratively. Furthermore, the simulation results show that the average charging cost of EVs is reduced by 25% using the proposed strategy, and the load balance of CSs is relatively high, which shows the effectiveness of this strategy in reducing costs and balancing loads.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Electric Taxi Charging Strategy Based on Stackelberg Game Considering Hotspot Information
    Ma, Kai
    Hu, Xiaoyan
    Yang, Jie
    Yue, Zhiyuan
    Yang, Bo
    Liu, Zhixin
    Guan, Xinping
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (03) : 2427 - 2436
  • [2] Stackelberg Game Based on Supervised Charging Method and Pricing Strategy of Charging Service Providers
    Shi Y.
    Feng D.
    Zhou E.
    Fang C.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2019, 34 : 742 - 751
  • [3] Distributed charging control of plug-in electric vehicles in microgrid based on Stackelberg game
    Luo G.
    Li J.
    Yu J.
    Xu K.
    Chen G.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2024, 44 (02): : 81 - 86and102
  • [4] Hierarchical management strategy for electric vehicles charging schedule considering the scarcity of charging resources
    Zhu, Xu
    Sun, Yuanzhang
    Yang, Jun
    Zhan, Xiangpeng
    Wu, Fuzhang
    Fan, Hui
    Liang, Jifeng
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2022, 16 (15) : 3092 - 3108
  • [5] Optimal Charging Navigation Strategy Design for Rapid Charging Electric Vehicles
    Mo, Wangyi
    Yang, Chao
    Chen, Xin
    Lin, Kangjie
    Duan, Shuaiqi
    ENERGIES, 2019, 12 (06)
  • [6] Ordered charge control considering the uncertainty of charging load of electric vehicles based on Markov chain
    Han, Xiaojuan
    Wei, Zixuan
    Hong, Zhenpeng
    Zhao, Song
    RENEWABLE ENERGY, 2020, 161 : 419 - 434
  • [7] Optimal Energy Trade in Retailer, Charging Station, and Electric Vehicles using a Stackelberg Game
    Adil, Muhammad
    Mahmud, M. A. Parvez
    Kouzani, Abbas Z.
    Khoo, Sui Yang
    2023 IEEE IAS GLOBAL CONFERENCE ON RENEWABLE ENERGY AND HYDROGEN TECHNOLOGIES, GLOBCONHT, 2023,
  • [8] Charging Infrastructure for Electric Vehicles Considering Their Integration into the Smart Grid
    Tamay, Pablo
    Inga, Esteban
    SUSTAINABILITY, 2022, 14 (14)
  • [9] Study on Battery Charging Strategy of Electric Vehicles Considering Battery Capacity
    Jeon, Seoung Uk
    Park, Jung-Wook
    Kang, Byung-Kwan
    Lee, Hee-Jin
    IEEE ACCESS, 2021, 9 : 89757 - 89767
  • [10] A Personalized Orderly Charging Strategy for Electric Vehicles Considering Users' Needs
    Xu, Xiaodan
    Peng, Minfang
    Li, Sijia
    Chen, Jueyu
    Zhu, Yicheng
    2018 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2018, : 1190 - 1195